147 research outputs found

    Code Generation = A* + BURS

    Get PDF
    A system called BURS that is based on term rewrite systems and a search algorithm A* are combined to produce a code generator that generates optimal code. The theory underlying BURS is re-developed, formalised and explained in this work. The search algorithm uses a cost heuristic that is derived from the termrewrite system to direct the search. The advantage of using a search algorithm is that we need to compute only those costs that may be part of an optimal rewrite sequence

    Mean-Field HP Model, Designability and Alpha-Helices in Protein Structures

    Full text link
    Analysis of the geometric properties of a mean-field HP model on a square lattice for protein structure shows that structures with large number of switch backs between surface and core sites are chosen favorably by peptides as unique ground states. Global comparison of model (binary) peptide sequences with concatenated (binary) protein sequences listed in the Protein Data Bank and the Dali Domain Dictionary indicates that the highest correlation occurs between model peptides choosing the favored structures and those portions of protein sequences containing alpha-helices.Comment: 4 pages, 2 figure

    Protein structures and optimal folding emerging from a geometrical variational principle

    Full text link
    Novel numerical techniques, validated by an analysis of barnase and chymotrypsin inhibitor, are used to elucidate the paramount role played by the geometry of the protein backbone in steering the folding to the correct native state. It is found that, irrespective of the sequence, the native state of a protein has exceedingly large number of conformations with a given amount of structural overlap compared to other compact artificial backbones; moreover the conformational entropies of unrelated proteins of the same length are nearly equal at any given stage of folding. These results are suggestive of an extremality principle underlying protein evolution, which, in turn, is shown to be associated with the emergence of secondary structures.Comment: Revtex, 5 pages, 5 postscript figure

    Optimized Folding Simulations of Protein A

    Full text link
    We describe optimized parallel tempering simulations of the 46-residue B-fragment of protein A. Native-like configurations with a root-mean-square deviation of approximately 3A to the experimentally determined structure (Protein Data Bank identifier 1BDD) are found. However, at biologically relevant temperatures such conformations appear with only about 10% frequency in our simulations. Possible short comings in our energy function are discussed.Comment: 6 pages, 8 figure

    The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b

    Full text link
    We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP-43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly the parameters of the system. Notably, the largely improved precision on the stellar density (2.41+-0.08 rho_sun) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717+-0.025 M_sun and 0.667+-0.011 R_sun. Our deduced physical parameters for the planet are 2.034+-0.052 M_jup and 1.036+-0.019 R_jup. Taking into account its level of irradiation, the high density of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035(-0.0025,+0.0060), is consistent with a fully circularized orbit. We detect the emission of the planet at 2.09 microns at better than 11-sigma, the deduced occultation depth being 1560+-140 ppm. Our detection of the occultation at 1.19 microns is marginal (790+-320 ppm) and more observations are needed to confirm it. We place a 3-sigma upper limit of 850 ppm on the depth of the occultation at ~0.9 microns. Together, these results strongly favor a poor redistribution of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion.Comment: 14 pages, 6 tables, 11 figures. Accepted for publication in A&

    Energy Landscape and Global Optimization for a Frustrated Model Protein

    Get PDF
    The three-color (BLN) 69-residue model protein was designed to exhibit frustrated folding. We investigate the energy landscape of this protein using disconnectivity graphs and compare it to a Go model, which is designed to reduce the frustration by removing all non-native attractive interactions. Finding the global minimum on a frustrated energy landscape is a good test of global optimization techniques, and we present calculations evaluating the performance of basin-hopping and genetic algorithms for this system.Comparisons are made with the widely studied 46-residue BLN protein.We show that the energy landscape of the 69-residue BLN protein contains several deep funnels, each of which corresponds to a different β-barrel structure

    Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system

    Get PDF
    WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (R′HK activity parameter lies slightly below the basal level; there is no significant time-variability in the log R′HK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B − V) ≈ 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s−1 cm−2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10−20MJ Gyr−1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape

    Calculation of the Free Energy and Cooperativity of Protein Folding

    Get PDF
    Calculation of the free energy of protein folding and delineation of its pre-organization are of foremost importance for understanding, predicting and designing biological macromolecules. Here, we introduce an energy smoothing variant of parallel tempering replica exchange Monte Carlo (REMS) that allows for efficient configurational sampling of flexible solutes under the conditions of molecular hydration. Its usage to calculate the thermal stability of a model globular protein, Trp cage TC5b, achieves excellent agreement with experimental measurements. We find that the stability of TC5b is attained through the coupled formation of local and non-local interactions. Remarkably, many of these structures persist at high temperature, concomitant with the origin of native-like configurations and mesostates in an otherwise macroscopically disordered unfolded state. Graph manifold learning reveals that the conversion of these mesostates to the native state is structurally heterogeneous, and that the cooperativity of their formation is encoded largely by the unfolded state ensemble. In all, these studies establish the extent of thermodynamic and structural pre-organization of folding of this model globular protein, and achieve the calculation of macromolecular stability ab initio, as required for ab initio structure prediction, genome annotation, and drug design

    Enhanced Conformational Sampling using Replica Exchange with Collective-Variable Tempering

    Get PDF
    The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strength of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide

    Single Molecule Analysis Research Tool (SMART): An Integrated Approach for Analyzing Single Molecule Data

    Get PDF
    Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data
    corecore