44 research outputs found

    A Fermi Surface study of Ba1−x_{1-x}Kx_{x}BiO3_{3}

    Full text link
    We present all electron computations of the 3D Fermi surfaces (FS's) in Ba1−x_{1-x}Kx_{x}BiO3_{3} for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba1−x_{1-x}Kx_{x}BiO3_{3} for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba1−x_{1-x}Kx_{x}BiO3_{3} and BaPbx_{x}Bi1−x_{1-x}O3_{3} by comparing aspects of their electronic structures and those of the end compounds BaBiO3_{3}, KBiO3_3 and BaPbO3_3. Our theoretically predicted FS's in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    Optimised Anaesthesia to Reduce Post Operative Cognitive Decline (POCD) in Older Patients Undergoing Elective Surgery, a Randomised Controlled Trial

    Get PDF
    Background The study determined the one year incidence of post operative cognitive decline (POCD) and evaluated the effectiveness of an intra-operative anaesthetic intervention in reducing post-operative cognitive impairment in older adults (over 60 years of age) undergoing elective orthopaedic or abdominal surgery. Methods and Trial Design The design was a prospective cohort study with a nested randomised, controlled intervention trial, using intra-operative BiSpectral index and cerebral oxygen saturation monitoring to enable optimisation of anaesthesia depth and cerebral oxygen saturation in older adults undergoing surgery. Results In the 52 week prospective cohort study (192 surgical patients and 138 controls), mild (?2 = 17.9 p<0.0001), moderate (?2 = 7.8 p = 0.005) and severe (?2 = 5.1 p = 0.02) POCD were all significantly higher after 52 weeks in the surgical patients than among the age matched controls. In the nested RCT, 81 patients were randomized, 73 contributing to the data analysis (34 intervention, 39 control). In the intervention group mild POCD was significantly reduced at 1, 12 and 52 weeks (Fisher’s Exact Test p = 0.018, ?2 = 5.1 p = 0.02 and ?2 = 5.9 p = 0.015), and moderate POCD was reduced at 1 and 52 weeks (?2 = 4.4 p = 0·037 and ?2 = 5.4 p = 0.02). In addition there was significant improvement in reaction time at all time-points (Vigilance Reaction Time MWU Z = ?2.1 p = 0.03, MWU Z = ?2.7 p = 0.004, MWU Z = ?3.0 p = 0.005), in MMSE at one and 52 weeks (MWU Z = ?2.9 p = 0.003, MWU Z = ?3.3 p = 0.001), and in executive function at 12 and 52 weeks (Trail Making MWU Z = ?2.4 p = .0.018, MWU Z = ?2.4 p = 0.019). Conclusion POCD is common and persistent in older adults following surgery. The results of the nested RCT indicate the potential benefits of intra-operative monitoring of anaesthetic depth and cerebral oxygenation as a pragmatic intervention to reduce post-operative cognitive impairment

    Improvement of LWR thermal margins by introducing thorium

    No full text
    The use of thorium in pressurized water reactor fuel assemblies is investigated in this paper. The novelty of the reported work is to study a fuel design primarily intended to control the excess of reactivity at beginning of life, and flatten the intra-assembly power distribution rather than converting fertile Th-232 into fissile U-233. The fuel assembly is a traditional 17 x 17 pressurized water reactor fuel design. The majority of the fuel pins contain a mixture of uranium and thorium oxides, while a few fuel pins contain a mixture between uranium and gadolinium oxides. The calculation were performed by two-dimensional transport calculations with the Studsvik Scandpower CASMO-4E code in order to determine the main neutronic properties of the new fuel design, compared with the traditional uranium-based fuel assembly containing gadolinium used as reference. The majority of the neutronic properties of the uranium-thorium-based fuel assembly were similar to the reference fuel assembly. The Doppler and the moderator temperature coefficients of reactivity were found to be appreciably more negative in the uranium-thorium-based design, but still within acceptable limits. One advantage of this new uranium-thorium-based design is a reduction of the pin peak power at beginning of life, because of smaller amount of gadolinium being used. This is important from an operational and safety viewpoint, since the margin to departure from nucleate boiling becomes larger. Consequently, this new type of thorium-based fuel assembly shows advantageous properties for use in power-uprated cores

    Metal-dielectric transition in Ba0.6K0.4BiO3-y single crystals studied by scanning photoelectron microscopy

    No full text
    The electronic structure of Ba0.6K0.4BiO3-y single crystals has been studied using a scanning photoelectron microscope with a lateral resolution in the one micrometer range. It is possible to change the oxygen content (y) and convert the surface from the metallic to the dielectric state presumably by breaking the Bi-O bonds by using the focused zero-order light to irradiate the sample surface. The electronic states close to the Fermi level after such a treatment show a different doping dependence as compared to the case of potassium doping. By imaging the surface on the micrometer scale we find significant variations in the valence band intensity over the surface and observe a rather large intensity of the density of states close to the Fermi level. This will have a large impact on the discussions of dynamical lattice distortion and pseudogap behavior in the metallic phase

    X-ray absorption study of oxygen in the high-Tc superconductor Bi2Sr2CaCu2O8 near the interfaces to Cu, Ag and Au

    No full text
    The influence on O 2p holes in single crystalline Bi2Sr2CaCu2O8 upon the interface formation to Cu, Ag and Au has been studied by O K edge X-ray absorption measurements. It was found that Cu reduces the amount of doping induced O 2p holes significantly in the vicinity of the interface, whereas Ag and Au gave a much smaller reduction of these states. Photoemission spectra confirmed previous findings that Cu causes a strong chemical reaction at the Bi-O surface of Bi2Sr2CaCu2O8, in contrast to Ag and Au which induced only a minimal reaction. The results support the opinion that the Bi-O layers are essential for the doping of the Cu-O2 layers in Bi2Sr2CaCu2O8
    corecore