151 research outputs found
Understanding the Spatial Clustering of Severe Acute Respiratory Syndrome (SARS) in Hong Kong
We applied cartographic and geostatistical methods in analyzing the patterns of disease spread during the 2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong using geographic information system (GIS) technology. We analyzed an integrated database that contained clinical and personal details on all 1,755 patients confirmed to have SARS from 15 February to 22 June 2003. Elementary mapping of disease occurrences in space and time simultaneously revealed the geographic extent of spread throughout the territory. Statistical surfaces created by the kernel method confirmed that SARS cases were highly clustered and identified distinct disease “hot spots.” Contextual analysis of mean and standard deviation of different density classes indicated that the period from day 1 (18 February) through day 16 (6 March) was the prodrome of the epidemic, whereas days 86 (15 May) to 106 (4 June) marked the declining phase of the outbreak. Origin-and-destination plots showed the directional bias and radius of spread of superspreading events. Integration of GIS technology into routine field epidemiologic surveillance can offer a real-time quantitative method for identifying and tracking the geospatial spread of infectious diseases, as our experience with SARS has demonstrated
Recommended from our members
Connecting Geospatial Information to Society through Cyberinfrastructure
New N-phenylpyrrolamide DNA gyrase B inhibitors: Optimization of efficacy and antibacterial activity
The ATP binding site located on the subunit B of DNA gyrase is an attractive target for the development of new antibacterial agents. In recent decades, several small-molecule inhibitor classes have been discovered but none has so far reached the market. We present here the discovery of a promising new series of N-phenylpyrrolamides with low nanomolar IC50 values against DNA gyrase, and submicromolar IC50 values against topoisomerase IV from Escherichia coil and Staphylococcus aureus. The most potent compound in the series has an IC50 value of 13 nM against E. coil gyrase. Minimum inhibitory concentrations (MICs) against Gram-positive bacteria are in the low micromolar range. The oxadiazolone derivative with an IC50 value of 85 nM against E. coli DNA gyrase displays the most potent antibacterial activity, with MIC values of 1.56 mu M against Enterococcus faecalis, and 3.13 mu M against wild type S. aureus, methicillinresistant S. aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). The activity against wild type E. coli in the presence of efflux pump inhibitor phenylalanine-arginine beta-naphthylamide (PA beta N) is 4.6 mu M. (C) 2018 Elsevier Masson SAS. All rights reserved
From taxonomies to ontologies: formalizing generalization knowledge for on-demand mapping
© 2015 Cartography and Geographic Information Society Automation of the cartographic design process is central to the delivery of bespoke maps via the web. In this paper, ontological modeling is used to explicitly represent and articulate the knowledge used in this decision-making process. A use case focuses on the visualization of road traffic accident data as a way of illustrating how ontologies provide a framework by which salient and contextual information can be integrated in a meaningful manner. Such systems are in anticipation of web-based services in which the user knows what they need, but do not have the cartographic ability to get what they want
- …