30 research outputs found
Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa
Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation, maintains vital ecosystems, and strongly influences terrestrial water and energy budgets. Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained. Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies
Phosphorus removal from eutrophic waters with an aluminium hybrid nanocomposite
An excess of phosphorus (P) is the most common cause of eutrophication of freshwater bodies. Thus, it is imperative to reduce the concentration of P to prevent harmful algal blooms. Moreover, recovery of P has been gaining importance because its natural source will be exhausted in the near future. Therefore, the present work investigated the removal and recovery of phosphate from water using a newly developed hybrid nanocomposite containing aluminium nanoparticles (HPN). The HPN-Pr removes 0.80 ± 0.01 mg P/g in a pH interval between 2.0 and 6.5. The adsorption mechanism was described by a Freundlich adsorption model. The material presented good selectivity for phosphate and can be regenerated using an HCl dilute solution. The factors that contribute most to the attractiveness of HPN-Pr as a phosphate sorbent are its moderate removal capacity, feasible production at industrial scale, reuse after regeneration and recovery of phosphate.The authors acknowledge the Foundation for Science and Technology (FCT) Project SFRH/BD/39085/2007 for the financial support
Temporal Asynchrony of Trophic Status Between Mainstream and Tributary Bay Within a Giant Dendritic Reservoir: The Role of Local-Scale Regulators
Limnologists have regarded temporal coherence (synchrony) as a powerful tool for identifying the relative importance of local-scale regulators and regional climatic drivers on lake ecosystems. Limnological studies on Asian reservoirs have emphasized that climate and hydrology under the influences of monsoon are dominant factors regulating seasonal patterns of lake trophic status; yet, little is known of synchrony or asynchrony of trophic status in the single reservoir ecosystem. Based on monthly monitoring data of chlorophyll a, transparency, nutrients, and nonvolatile suspended solids (NVSS) during 1-year period, the present study evaluated temporal coherence to test whether local-scale regulators disturb the seasonal dynamics of trophic state indices (TSI) in a giant dendritic reservoir, China (Three Gorges Reservoir, TGR). Reservoir-wide coherences for TSICHL, TSISD, and TSITP showed dramatic variations over spatial scale, indicating temporal asynchrony of trophic status. Following the concept of TSI differences, algal productivity in the mainstream of TGR and Xiangxi Bay except the upstream of the bay were always limited by nonalgal turbidity (TSICHL−TSISD <0) rather than nitrogen and phosphorus (TSICHL−TSITN <0 and TSICHL−TSITP <0). The coherence analysis for TSI differences showed that local processes of Xiangxi Bay were the main responsible for local asynchrony of nonalgal turbidity limitation levels. Regression analysis further proved that local temporal asynchrony for TSISD and nonalgal turbidity limitation levels were regulated by local dynamics of NVSS, rather than geographical distance. The implications of the present study are to emphasize that the results of trophic status obtained from a single environment (reservoir mainstream) cannot be extrapolated to other environments (tributary bay) in a way that would allow its use as a sentinel site
Estimating the effect of climate change on the hydrology of Ssezibwa catchment, Uganda
This study investigates the potential effects of climate change on the
hydrology of Ssezibwa catchment in Uganda. The study employs
statistical downscaling techniques, which have of recent proved useful in
deriving more detailed and reliable climate change scenarios for use in
hydrological models for impact assessment. The first part of this study
investigates the current climatic trends in the region. Future climate
change scenarios are obtained from the UK Hadley climate model
(HadCM3) and downscaled to the local climate of the study area. The
downscaled results were used as inputs to the WetSpa hydrological
model, a physically based distributed rainfall-runoff model, which was
used to simulate the resulting hydrological changes. One of the key
findings was that climate change is actually taking place in the study
area. The results further showed that precipitation in the study area will
generally decrease while temperatures will increase with 1-4°C in the dry
periods. These changes will have significant impact on the river
discharge by reducing the flows in the dry periods especially between
May and September, while heavy floods were simulated for the wet
months between November and March. In the 2020’s these changes were
shown to be small, but they will increase significantly beginning the
2050’s. These results provide new findings on the effects of climate
change on water resources in Africa. However, since the downscaling
process is associated with much uncertainty, the findings should provide
a basis for further research of especially the downscaling of precipitation
data.status: publishe