29 research outputs found

    Nanofluids as Novel Alternative Smart Fluids for Reservoir Wettability Alteration

    Get PDF
    This chapter presents an account of two metal oxide nanoparticles (zirconium and nickel oxide) on basis of their structure, morphology, crystallinity phases, and their wetting effect on solid-liquid interface. As a preliminary step to sound understanding of process mechanisms; wettability, nanoparticles, and their relations thereof were scrutinized. To investigate the nanofluids wetting inclinations, complex mixtures of the nanoparticles and NaCl brine (ZrO2/NaCl; NiO/NaCl) were formulated and their technical feasibility as wetting agents tested via contact angle measurement. The result shows that the nanoparticles exhibit different structural and morphological features and capable of addressing reservoir wettability challenges owing to favorable adsorption behavior on the surface of the calcite which facilitated the wetting changes quantified by contact angle. We believe this study will significantly impact the understanding of wetting at solid-liquid interface which is crucial for recovery process optimization

    Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation

    Get PDF
    Wettability remains a prime factor that controls fluid displacement at pore-scale with substantial impact on multi-phase flow in the subsurface. As the rock surface becomes hydrophobic, any oleic phase present is tightly stored in the rock matrix and produced (hydrocarbon recovery) or cleaned up (soil-decontamination) by standard waterflooding methods. Although surface active agents such as surfactants have been used for several decades for changing the wetting states of such rocks, an aspect that has been barely premeditated is the simultaneous blends of surfactants and nanoparticles. This study thus, systematically reports the behaviour of surfactants augmented nanoparticles on wettability alteration. Contact angle, spontaneous imbibition, and mechanistic approaches were adopted to assess the technical feasibility of the newly formulated wetting agents, tested over wide-ranging conditions to ascertain efficient wetting propensities. The contact angle measurement is in good agreement with the morphological and topographical studies and spontaneous imbibition. The wetting trends for the formulated systems indicate advancing and receding water contact angle decreased with increase in nanoparticle concentration and temperature, and the spontaneous water imbibition test also showed faster water-imbibing tendencies for nanoparticle-surfactant exposed cores. Thus, the new formulated nanoparticle-surfactant systems were considered suitable for enhancing oil recovery and soil-decontamination, particularly in fractured hydrophobic reservoirs

    A Realistic Look at Nanostructured Material as an Innovative Approach for Enhanced Oil Recovery Process Upgrading

    Get PDF
    With the continuous rise in energy demand and decline in reserves, the Petroleum Industries are constantly in search of inventive and novel approaches to optimize hydrocarbon recovery despite several decades of deployment of conventional and enhanced strategies. This chapter presents an in-depth analysis of nanomaterial (nanoparticles), their unique characteristics and potentials in relation to smart field development, enhanced oil recovery (EOR) and CO2 geosequestration. The particles surface functionalities, unique size dependent property, adsorption, and transport behavior were scrutinized. The materials precise role in enhancing reservoir parameters that influences rock–fluid interactions, and reservoir fluid distribution and displacement such as permeability, wettability, interfacial tension, and asphaltene aggregate growth inhibition were evaluated. The study argues that the application of nanoparticle based fluids as novel EOR approach offers more holistic measures, potentials, and opportunities than micro and macro particles and can stimulate the continuous evolution of EOR processes even under harsh reservoir conditions, thus, offering better benefits over conventional surface-active agents. We believe this study will significantly impact the understanding of EOR with respect to nanoparticles, which is crucial for augmenting reservoir processes and to accelerate the realization of nanoparticles for EOR and CO2 sequestration processes at industrial scale

    EOR Processes, Opportunities and Technological Advancements

    Get PDF
    Enhanced oil recovery (EOR) processes are well known for their efficiency in incrementing oil production; however, the selection of the most suitable method to adopt for specific field applications is challenging. Hence, this chapter presents an overview of different EOR techniques currently applied in oil fields, the opportunities associated with these techniques, key technological advancements to guide the decision-making process for optimum applicability and productivity and a brief review of field applications

    Nanoparticles influence on wetting behaviour of fractured limestone formation

    Get PDF
    Nanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same particle concentration; while ZrO2 demonstrated a better efficiency by altering strongly oil-wet (water contact angle θ=152°) calcite substrates into a strongly water-wet (θ=44°) state, NiO changed wettability to an intermediate-wet condition (θ=86°) at 0.05 wt% nanoparticle concentration. We conclude that ZrO2 is very efficient in terms of inducing strong water-wettability; and ZrO2 based nanofluids have a high potential as EOR agents

    Nanoparticles for Enhanced Oil Recovery Processes

    No full text
    With the continuous rise in energy demand and decline in conventional reserves, the oil industries are constantly in search of inventive and novel approaches to optimize hydrocarbon recovery potentials, despite, several decades of deployment of conventional strategies and enhanced methodologies. This study systematically investigates the possibilities of nanostructured materials, specifically nanoparticles, to be of substantial benefit to enhanced oil recovery with a focus on wettability alteration. By investigating the interfacial behaviour of NiO and ZrO2 nanoparticles at solid-liquid interfaces, the study identified a prime characteristic of nanoparticle in EOR, which is its ability to improve the property of the dispersal, even at very low particle concentrations in suspensions, and its capacity to alter hydrophobic limestone reservoir rock surfaces towards hydrophilicity, which is crucial for a variety of EOR related processes - better spontaneous oil displacement, enhanced carbon geo-sequestration and soil-decontamination processes

    Nanofluids for enhanced oil recovery processes: Wettability alteration using zirconium oxide

    No full text
    © 2016, Offshore Technology Conference Ultimate oil recovery and displacement efficiency at the pore-scale are controlled by the rock wettability thus there is a growing interest in the wetting behaviour of reservoir rocks as production from fractured oil-wet or mixed-wet limestone formations have remained a key challenge. Conventional waterflooding methods are inefficient in such formation due to poor spontaneous imbibition of water into the oil-wet rock capillaries. However, altering the wettability to water-wet could yield recovery of significant amounts of additional oil thus this study investigates the influence of nanoparticles on wettability alteration. The efficiency of various formulated zirconium-oxide (ZrO2) based nanofluids at different nanoparticle concentrations (0-0.05 wt. %) was assessed through contact angle measurements. Results from the experiments showed ZrO2 nanofluid have great potentials in changing oil-wet limestone towards strongly water-wet condition. The best performance was observed at 0.05wt% ZrO2 nanoparticle concentration which changed an originally strongly oil-wet (152°) calcite substrate towards a strongly water-wet (44°) state thus we conclude that ZrO2 is a good agent for enhanced oil recovery

    Morphological evaluation of heterogeneous oolitic limestone under pressure and fluid flow using X-ray microtomography

    No full text
    Pore-scale analysis of carbonate rock is of great relevance to the oil and gas industry owing to their vast application potentials. Although, efficient fluid flow at pore scale is often disrupted owing to the tight rock matrix and complex heterogeneity of limestone microstructures, factors such as porosity, permeability and effective stress greatly impact the rock microstructures; as such an understanding of the effect of these variables is vital for various natural and engineered processes. In this study, the Savonnières limestone as a carbonate mineral was evaluated at micro scales using X-ray micro-computed tomography at high resolutions (3.43 μm and 1.25 μm voxel size) under different effective stress (0 MPa, 20 MPa) to ascertain limestone microstructure and gas permeability and porosity effect. The waterflooding (5 wt% NaCl) test was conducted using microCT in-situ scanning and nanoindentation test was also performed to evaluate microscale geomechanical heterogeneity of the rock. The nanoindentation test results showed that the nano/micro scale geomechanical properties are quite heterogeneous where the indentation modulus for the weak consolidated area was as low as 1 GPa. We observed that the fluid flow easily broke some less-consolidated areas (low indentation modulus) area, coupled with increase in porosity; and consistent with fines/particles migration and re-sedimentation were identified, although the effective stress showed only a minor effect on the rock microstructure

    Wettability alteration of carbonate rocks via nanoparticle-anionic surfactant flooding at reservoirs conditions

    No full text
    Nanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery (EOR) and carbon geostorage. At ambient conditions, nanoparticles can effectively alter the wettability of the strongly oil-wet rocks to water-wet. However, the reservoir conditions present the greatest challenge for the success of this application at the field scale. In this work, the performance of anionic surfactant-silica nanoparticle formulation on wettability alteration of oil-wet carbonate surface at reservoir conditions was investigated. A high-pressure temperature vessel was used to apply nano-modification of oil-wet calcite sample at subsurface conditions (20 MPa, and 70°C). Moreover, to simulate all the potential scenarios inside the oil reservoirs, various concentrations of nanoparticles, surfactant, and salinities were tested. Contact angle measurements on calcite substrates and spontaneous imbibition test on limestone cores were performed to both the natural and modified (oil-wet) samples to consider the effect of heterogeneity and rock complexity on surface wettability. The results showed that formulations of Sodium Dodecylsulfatesilica nanoparticles can alter the wettability of oil-wet calcite to strongly water-wet at reservoir conditions. Further, the spontaneous imbibition data confirmed the role of nano-suspension to render the oil-wet pores to intermediate and water-wet. The findings of this study provide new insights into nanofluids applications for enhanced oil recovery and carbon geo-storage

    Formation water geochemistry for carbonate reservoirs in Ordos basin, China: Implications for hydrocarbon preservation by machine learning

    No full text
    Formation water can in principal be used to identify hydrocarbon reserves. One such potential reserves are the gas reservoirs in the Ordos basin in China. However, there is limited data for this basin; we thus investigated the geochemical properties of a large range of formation water acquired from the Ordovician in the Ordos basin (42 brine samples obtained from different wells at M5 member) and analyzed their chemical characteristics. The results showed that this formation water is associated with a sealed reservoir, which is good for hydrocarbon storage. This is also related to the demonstrated strong diagenetic transformations. We also proposed statistical relationships between these geochemical properties and hydrocarbon storage based on a machine learning method (Decision tree). The results suggest that the salinity, Na+/Cl− ratio, (Cl−-Na+)/Mg2+ ratio, (HCO3−-CO32-)/Ca2+ ratio and Mg2+/Ca2+ ratio highly correlate with the gas preservation. The results thus provide drastically more accurate predictions in terms of where to find gas reservoirs in the Ordos basin, and can thus lead to significantly better exploitation of these resources
    corecore