7,982 research outputs found

    Considerations on the preliminary sizing of electrical machines with hairpin windings

    Get PDF
    Although the standard preliminary sizing of electrical machines equipping random windings is well consolidated and is worldwide acknowledged to be a good starting point for the design, there is no proof of accuracy and confidence when it comes to hairpin windings. This winding technology is gaining extensive attention due to its inherently high slot fill factor, good heat dissipation, strong rigidity, and short end-windings. These features make hairpin windings a potential candidate for some traction application to enhance power and/or torque densities. In this paper, a comparative design is done using the classical sizing tools available in literature between two surface-mounted permanent magnet synchronous machines, one featuring a random winding and one with a hairpin layout. The study aims at highlighting the hairpin winding challenges at high frequency operations and at showing limits of applicability of these standard approaches when applied to this technology. For verification purposes, finite element evaluations are also performed

    Investigation of the Temperature Effects on Copper Losses in Hairpin Windings

    Get PDF
    Today, an extensive electrification is occurring in all industrial sectors, with a special interest seen in the automotive and aerospace industries. The electric motor, surely, is one of the main actors in this context, and an ever-increasing effort is spent with the aim of improving its efficiency and torque density. Hairpin windings are one of the recent technologies which are implemented onto the stator of the electric motor. Compared to conventional random windings, it inherently features lower DC resistance, higher fill factor, better thermal performance, improved reliability, and an automated manufacturing process. However, its bottleneck is the high ohmic losses at high-frequency operations due to skin and proximity effects (AC losses), resulting in a negative impact on the temperature map of the machine. Nevertheless, while it is well-known that DC losses increase linearly with the operating temperatures, the AC losses trend needs further insight. This paper demonstrates that operating the machine at higher temperatures could be beneficial for overall efficiency, especially at high-frequency operations. This suggests that a paradigm shift is required for the design of electric motors equipped with hair-pin windings, which should therefore focus on a temperature-oriented approach. In addition, the effect of the rotor topology on AC losses, which is often overlooked, is also considered in this paper. The combination of these effects is used to carry out observations and, eventually, to provide design recommendations. Finite element electromagnetic and thermal evaluations are performed to prove the findings of this research

    Overview of muscle fatigue differences between maximal eccentric and concentric resistance exercise

    Get PDF
    Since the 1970s, researchers have studied a potential difference in muscle fatigue (acute strength loss) between maximal eccentric (ECCmax) and concentric (CONmax) resistance exercise. However, a clear answer to whether such a difference exists has not been established. Therefore, the aim of our paper was to overview methods and results of studies that compared acute changes in muscle strength after bouts of ECCmax and CONmax resistance exercise. We identified 30 relevant studies. Participants were typically healthy men aged 20–40 years. Exercise usually consisted of 40–100 isokinetic ECCmax and CONmax repetitions of the knee extensors or elbow flexors. Both ECCmax and CONmax exercise caused significant strength loss, which plateaued and rarely exceeded 60% of baseline, suggesting strength preservation. In upper-body muscles, strength loss at the end of ECCmax (31.4 ± 20.4%) and CONmax (33.6 ± 17.5%) exercise was similar, whereas in lower-body muscles, strength loss was less after ECCmax (13.3 ± 12.2%) than CONmax (39.7 ± 13.3%) exercise. Muscle architecture and daily use of lower-body muscles likely protects lower-body muscles from strength loss during ECCmax exercise. We also reviewed seven studies on muscle fatigue during coupled ECCmax-CONmax exercise and found similar strength loss in the ECC and CON phases. We also found evidence from three studies that more ECC than CON repetitions can be completed at equal relative loads. These results indicate that muscle fatigue may manifest differently between ECCmax and CONmax resistance exercise. An implication of the results is that prescriptions of ECC resistance exercise for lower-body muscles should account for greater fatigue resilience of these muscles compared to upper-body muscles

    Muscle strength and activity in men and women performing maximal effort biceps curl exercise on a new machine that automates eccentric overload and drop setting

    Get PDF
    Purpose: Connected adaptive resistance exercise (CARE) machines are new equipment purported to adjust resistances within and between repetitions to make eccentric (ECC) overload and drop sets more feasible. Here, we examined muscle strength, endurance, electromyographic activity (EMG), and perceptions of fatigue during unilateral bicep curl exercise with a CARE machine and dumbbells. We also tested for sex differences in muscle fatigability. Methods: Twelve men and nine women attempted 25 consecutive coupled maximal ECC – concentric (CON) repetitions (ECCmax – CONmax) on a CARE machine. Participants also completed a CON one repetition maximum (1RM) and repetitions-to-failure tests with 60 and 80 % 1RM dumbbells. Results: Maximal strength on the CARE machine was greater during the ECC than CON phase, illustrating ECC overload (men: 27.1 ± 6.8, 14.7 ± 2.0 kg; women: 16.7 ± 4.7, 7.6 ± 1.4 kg). These maximal resistances demanded large neural drive. Biceps brachii EMG amplitude relative to CON dumbbell 1RM EMG was 140.1 ± 40.2 % (ECC) and 96.7 ± 25.0 % (CON) for men and 165.1 ± 61.1 % (ECC) and 89.4 ± 20.4 % (CON) for women. The machine’s drop setting algorithm permitted 25 consecutive maximal effort repetitions without stopping. By comparison, participants completed fewer repetitions-to-failure with the submaximal dumbbells (e.g., 60 % 1RM — men: 12.3 ± 4.4; women: 15.6 ± 4.7 repetitions). By the 25th CARE repetition, participants reported heightened biceps fatigue (~ 8 of 10) and exhibited large decreases in ECC strength (men: 63.5 ± 11.6 %; women: 44.1 ± 8.0 %), CON strength (men: 77.5 ± 6.5 %; women: 62.5 ± 12.8 %), ECC EMG (men: 38.6 ± 20.4 %; women: 26.2 ± 18.3 %), and CON EMG (men: 36.8 ± 20.4 %; women: 23.1 ± 18.4 %). Conclusion: ECC overload and drop sets occurred automatically and feasibly with CARE technology and caused greater strength and EMG loss in men than women

    Muscle fatigue during maximal eccentric-only, concentric-only, and eccentric-concentric bicep curl exercise with automated drop setting

    Get PDF
    Connected adaptive resistance exercise (CARE) machines are new technology purported to adjust resistance exercise loads in response to muscle fatigue. The present study examined muscle fatigue (strength loss, fatigue perceptions) during maximal eccentric-only (ECCmax-only), concentric-only (CONmax-only), and coupled ECC-CON (ECCmax-CONmax) bicep curl exercise on a CARE machine. Eleven men and nine women completed the three protocols in separate sessions and in random order. All protocols included 4 sets of 20 maximal effort muscle contractions. Strength loss was calculated as Set 4 set end load minus Set 1 highest load. The CARE machine\u27s algorithm adjusted resistances automatically, permitting continued maximal effort repetitions without stopping. Consequently, all protocols caused substantial fatigue. Women were most susceptible to strength loss from exercise that included maximal efforts in the ECC phase, whereas men were most susceptible to strength loss from exercise that included maximal efforts in the CON phase. With ECCmax-only exercise, ECC strength loss (mean ± SD) was similar between men (55.9 ± 14.1%) and women (56.4 ± 10.8%). However, with CONmax-only exercise, men and women experienced 55.6 ± 6.2% and 35.3 ± 8.7% CON strength loss, respectively. With ECCmax-CONmax exercise, men experienced greater ECC (62.9 ± 7.7%) and CON (77.0 ± 5.3%) strength loss than women (ECC: 48.5 ± 15.7%, CON: 66.2 ± 12.1%). Heightened perceptions of fatigue and pain of the exercised limb were reported after all protocols. Women generally reported more biceps pain than men. The results illustrate CARE technology delivers ECC-only and accentuated ECC exercise feasibly. Acute responses to repeated maximal effort bicep curl exercise with such technology might differ between men and women depending on muscle contraction type

    Linguistic politeness across Austria and Italy: Backing out of an invitation with an instant message

    Get PDF
    The study compares how native speakers of German from the area of Innsbruck (Austria) and native speakers of Italian from the area of Rome (Italy) perceive the communicative act of backing out of an invitation for dinner at the last minute, in a situation of low social distance. The purpose of the study is twofold: to shed light on the orientation of Austrian German and Italian languages/cultures in terms of linguistic politeness, and to expand empirical cross-cultural research to a less-commonly investigated speech act. Data collected by means of a discourse completion task (DCT) are triangulated with responses to an assessment question and metapragmatic comments, and analyzed following a quantitative approach. The analysis of the DCT findings shows some cross-group differences in the choice of speech act realization strategies and internal modifiers. However, the overall results reveal more similarities than differences between the two populations regarding the informants’ perception of face threat in last-minute cancellations. This seems to disprove the idea that the two groups belong to different cultural frameworks in terms of politeness orientation, at least as far as it concerns the specific speech act under investigation

    The Eccentric:Concentric Strength Ratio of Human Skeletal Muscle In Vivo:Meta-analysis of the Influences of Sex, Age, Joint Action, and Velocity

    Get PDF
    For decades, researchers have observed that eccentric (ECC) muscle strength is greater than concentric (CON) muscle strength. However, knowledge of the ECC:CON strength ratio is incomplete and might inform resistance exercise prescriptions. Our purposes were to determine the magnitude of the ECC:CON ratio of human skeletal muscle in vivo and explore if sex, age, joint actions/exercises, and movement velocity impact it. A total of 340 studies were identified through searches. It was possible to analyse 1516 ECC:CON ratios, aggregated from 12,546 individuals who made up 564 groups in 335 of the identified studies. Approximately 98% of measurements occurred on isokinetic machines. Bayesian meta-analyses were performed using log-ratios as response variables then exponentiated back to raw ratios. The overall main model estimate for the ECC:CON ratio was 1.41 (95% credible interval [CI] 1.38–1.44). The ECC:CON ratio was slightly less in men (1.38 [CI 1.34–1.41]) than women (1.47 [CI 1.43–1.51]), and greater in older adults (1.62 [CI 1.57–1.68]) than younger adults (1.39 [CI 1.36–1.42]). The ratio was similar between grouped upper-body (1.42 [CI 1.38–1.46]) and lower-body joint actions/exercises (1.40 [CI 1.37–1.44]). However, heterogeneity in the ratio existed across joint actions/exercises, with point estimates ranging from 1.32 to 2.61. The ECC:CON ratio was most greatly impacted by movement velocity, with a 0.20% increase in the ratio for every 1°/s increase in velocity. The results show that ECC muscle strength is ~ 40% greater than CON muscle strength. However, the ECC:CON ratio is greatly affected by movement velocity and to lesser extents age and sex. Differences between joint actions/exercises likely exist, but more data are needed to provide more precise estimates

    Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    Get PDF
    Abstract. The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy

    Maximal number of repetitions at percentages of the one repetition maximum: A meta-regression and moderator analysis of sex, age, training status, and exercise

    Get PDF
    The maximal number of repetitions that can be completed at various percentages of the one repetition maximum (1RM) [REPS ~ %1RM relationship] is foundational knowledge in resistance exercise programming. The current REPS ~ %1RM relationship is based on few studies and has not incorporated uncertainty into estimations or accounted for between-individuals variation. Therefore, we conducted a meta-regression to estimate the mean and between-individuals standard deviation of the number of repetitions that can be completed at various percentages of 1RM. We also explored if the REPS ~ %1RM relationship is moderated by sex, age, training status, and/or exercise. A total of 952 repetitions-to-failure tests, completed by 7289 individuals in 452 groups from 269 studies, were identified. Study groups were predominantly male (66%), healthy (97%), \u3c 59 years of age (92%), and resistance trained (60%). The bench press (42%) and leg press (14%) were the most commonly studied exercises. The REPS ~ %1RM relationship for mean repetitions and standard deviation of repetitions were best described using natural cubic splines and a linear model, respectively, with mean and standard deviation for repetitions decreasing with increasing %1RM. More repetitions were evident in the leg press than bench press across the loading spectrum, thus separate REPS ~ %1RM tables were developed for these two exercises. Analysis of moderators suggested little influences of sex, age, or training status on the REPS ~ %1RM relationship, thus the general main model REPS ~ %1RM table can be applied to all individuals and to all exercises other than the bench press and leg press. More data are needed to develop REPS ~ %1RM tables for other exercises. © 2023, The Author(s)

    AC losses reduction in Hairpin Windings produced via Additive Manufacturing

    Get PDF
    One of the key challenges of hairpin windings is the reduction of their high losses at high-frequency operations. Hairpin layouts comprising conductors with variable cross sections have proven good loss performance in previous studies. However, they come at the cost of significant manufacturing complications. The aim of this work is to design hairpin layouts featuring reduced losses compared to classical configurations, exploiting the flexibility enabled by additive manufacturing. In this context, the choice of a proper material with relatively high conductivity and low ecological impact plays an important role. Hence, this article first presents an overview of materials that can be used for the winding additive manufacturing, aiming to select the most suitable one for the application at hand. Then, the loss performance is evaluated and compared against classical copper hairpins. The results demonstrate that opportunely selected alloys featuring asymmetric configurations can compete against classical hairpin windings. © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper reflects only the author's view. JU is not responsible for any use that may be made of the information it contains
    • …
    corecore