337 research outputs found

    Correction to: Perinatal outcomes in Finnish twins : a retrospective study

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Perinatal outcome of dichorionic and monochorionic-diamniotic Finnish twins : a historical cohort study

    Get PDF
    Introduction Although the perinatal mortality of monochorionic twins has been reported to be higher, the role of chorionicity is debated and data from Finland are still lacking. To examine the effect of chorionicity on the main outcome measures, perinatal and neonatal mortality and neonatal morbidity of Finnish twins, a comprehensive population-based historical cohort study was performed at Helsinki University Hospitals. Material and methods All 1034 dichorionic and monochorionic-diamniotic twin pregnancies managed at Helsinki University Hospital area during 2006, 2010, 2014 and 2018 were collected from patient databases. Information on chorionicity was retrieved from ultrasound reports and all relevant clinical information from patient records. Differences in perinatal and neonatal mortality and neonatal morbidity were analyzed by performing group comparisons between the twins and chorionicity. The role of chorionicity was also assessed in logistic regression analyses. Results There were 1034 dichorionic-diamniotic (DCDA, n = 789, 76.3%, 95% confidence interval [CI] 73.6-78.9) and monochorionic-diamniotic (MCDA, n = 245, 23.7%, 95% CI 21.4-26.0) twin pregnancies during the studied years. Most (n = 580, 56.1%, 95% CI 52.8-59.2) twins were born at term, but 151 (61.6%, 95% CI 55.8-67.3) of MCDA twins were preterm and had lower birthweight and Apgar scores and higher risk of death of one twin. Perinatal and neonatal mortality did not differ between twins A and B, but the immediate outcome of twin B was worse, with lower arterial pH and Apgar scores and increased need of neonatal intensive care unit treatment. Conclusions Chorionicity contributes to the perinatal and neonatal outcome in favor of dichorionic twins. This disadvantage of MCDA twinning is likely explained by earlier gestational age at birth and inequal placental sharing. Irrespective of chorionicity, twin B faces more complications.Peer reviewe

    Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy

    Get PDF
    AbstractObjectivesThe aim of this study was to determine the effect of exercise training on myocardial oxidative metabolism and efficiency in patients with idiopathic dilated cardiomyopathy (DCM) and mild heart failure (HF).BackgroundExercise training is known to improve exercise tolerance and quality of life in patients with chronic HF. However, little is known about how exercise training may influence myocardial energetics.MethodsTwenty clinically stable patients with DCM (New York Heart Association classes I through III) were prospectively separated into a training group (five-month training program; n = 9) and a non-trained control group (n = 11). Oxidative metabolism in both the right and left ventricles (RV and LV) was measured using [11C]acetate and positron emission tomography. Myocardial work power was measured using echocardiography. Myocardial efficiency for forward work was calculated as myocardial work power per mass/LV oxidative metabolism.ResultsSignificant improvements were noted in exercise capacity (Vo2) and ejection fraction in the training group, whereas no changes were observed in the non-trained group. Exercise training reduced both RV and LV oxidative metabolism and elicited a significant increase in LV forward work efficiency, although no significant changes were observed in the non-trained group.ConclusionsExercise training improves exercise tolerance and LV function. This is accompanied by a decrease in biventricular oxidative metabolism and enhanced forward work efficiency. Therefore, exercise training elicits an energetically favorable improvement in myocardial function and exercise tolerance in patients with DCM

    Preoperative brain ÎĽ-opioid receptor availability predicts weight development following bariatric surgery in women

    Get PDF
    Bariatric surgery is the most effective method for weight loss in morbid obesity. There is significant individual variability in the weight loss outcomes, yet factors leading to postoperative weight loss or weight regain remain elusive. Alterations in the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) systems are associated with obesity and appetite control, and the magnitude of initial brain receptor system perturbation may predict long-term surgical weight loss outcomes. We tested this hypothesis by studying 19 morbidly obese women (mean BMI 40) scheduled to undergo bariatric surgery. We measured their preoperative MOR and D2R availabilities using positron emission tomography with [11C]carfentanil and [11C]raclopride, respectively, and then assessed their weight development association with regional MOR and D2R availabilities at 24-month follow-up. MOR availability in the amygdala consistently predicted weight development throughout the follow-up period, but no associations were found for D2R. This is the first study to our knowledge to demonstrate that neuroreceptor markers prior to bariatric surgery are associated with postoperative weight development. Postoperative weight regain may derive from dysfunction in the opioid system, and weight loss outcomes after bariatric surgery may be partially predicted based on preoperative brain receptor availability, opening up new potential for treatment possibilities

    Mesolimbic opioid-dopamine interaction is disrupted in obesity but recovered by weight loss following bariatric surgery

    Get PDF
    Obesity is a growing burden to health and the economy worldwide. Obesity is associated with central mu-opioid receptor (MOR) downregulation and disruption of the interaction between MOR and dopamine D-2 receptor (D2R) system in the ventral striatum. Weight loss recovers MOR function, but it remains unknown whether it also recovers aberrant opioid-dopamine interaction. Here we addressed this issue by studying 20 healthy non-obese and 25 morbidly obese women (mean BMI 41) eligible for bariatric surgery. Brain MOR and D2R availability were measured using positron emission tomography (PET) with [C-11]carfentanil and [C-11]raclopride, respectively. Either Roux-en-Y gastric bypass or sleeve gastrectomy was performed on obese subjects according to standard clinical treatment. 21 obese subjects participated in the postoperative PET scanning six months after bariatric surgery. In the control subjects, MOR and D2R availabilities were associated in the ventral striatum (r = .62) and dorsal caudate (r = .61). Preoperatively, the obese subjects had disrupted association in the ventral striatum (r = .12) but the unaltered association in dorsal caudate (r = .43). The association between MOR and D2R availabilities in the ventral striatum was recovered (r = .62) among obese subjects following the surgery-induced weight loss. Bariatric surgery and concomitant weight loss recover the interaction between MOR and D2R in the ventral striatum in the morbidly obese. Consequently, the dysfunctional opioid-dopamine interaction in the ventral striatum is likely associated with an obese phenotype and may mediate excessive energy uptake. Striatal opioid-dopamine interaction provides a feasible target for pharmacological and behavioral interventions for treating obesity

    The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [O-15]H2O

    Get PDF
    Background: Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients.Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] x 100%.Results: RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high.Conclusions: This study is the first to report [O-15]H2O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [O-15]H2O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [O-15]H2O PET method in evaluation of renal blood flow

    Binge eating disorder and morbid obesity are associated with lowered mu-opioid receptor availability in the brain

    Get PDF
    Both morbid obesity and binge eating disorder (BED) have previously been linked with aberrant brain opioid function. Behaviorally these two conditions are however different suggesting also differences in neurotransmitter function. Here we directly compared mu-opioid receptor (MOR) availability between morbidly obese and BED subjects. Seven BED and nineteen morbidly obese (non-BED) patients, and thirty matched control subjects underwent positron emission tomography (PET) with MOR-specific ligand [C-11]carfentanil. Both subjects with morbid obesity and BED had widespread reduction in [C-11]carfentanil binding compared to control subjects. However, there was no significant difference in brain MOR binding between subjects with morbid obesity and BED. Thus, our results indicate that there is common brain opioid abnormally in behaviorally different eating disorders involving obesity

    Pancreatic metabolism, blood flow, and β-cell function in obese humans.

    Get PDF
    Context: Glucolipotoxicity is believed to induce pancreatic &beta;-cell dysfunction in obesity. Previously, it has not been possible to study pancreatic metabolism and blood flow in humans. Objective: The objective of the study was to investigate whether pancreatic metabolism and blood flow are altered in obesity using positron emission tomography (PET). In the preclinical part, the method was validated in animals. Design: This was a cross-sectional study. Setting: The study was conducted in a clinical research center. Participants: Human studies consisted of 52 morbidly obese and 25 healthy age-matched control subjects. Validation experiments were done with rodents and pigs. Interventions: PET and magnetic resonance imaging studies using a glucose analog ([18F]fluoro-2-deoxy-d-glucose), a palmitate analog [14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid], and radiowater ([15O]H2O) were performed. In animals, a comparison between ex vivo and in vivo data was performed. Main Outcome Measures: Pancreatic glucose/fatty acid (FA) uptake, fat accumulation, and blood flow parameters of &beta;-cell function were measured. Results: PET proved to be a feasible method to measure pancreatic metabolism. Compared with healthy participants, obese participants had elevated pancreatic FA uptake (P &lt; .0001), more fat accumulation (P = .0001), lowered glucose uptake both during fasting and euglycemic hyperinsulinemia, and blunted blood flow (P &lt; .01) in the pancreas. Blood flow, FA uptake, and fat accumulation were negatively associated with multiple markers of &beta;-cell function. Conclusions: Obesity leads to changes in pancreatic energy metabolism with a substrate shift from glucose to FAs. In morbidly obese humans, impaired pancreatic blood flow may contribute to &beta;-cell dysfunction and in the pathogenesis of type 2 diabetes. &nbsp;</div

    Renal perfusion, oxygenation and metabolism: the role of imaging

    Get PDF
    Thanks to technical advances in the field of medical imaging, it is now possible to study key features of renal anatomy and physiology, but so far poorly explored due to the inherent difficulties in studying both the metabolism and vasculature of the human kidney. In this narrative review, we provide an overview of recent research findings on renal perfusion, oxygenation, and substrate uptake. Most studies evaluating renal perfusion with positron emission tomography (PET) have been performed in healthy controls, and specific target populations like obese individuals or patients with renovascular disease and chronic kidney disease (CKD) have rarely been assessed. Functional magnetic resonance (fMRI) has also been used to study renal perfusion in CKD patients, and recent studies have addressed the kidney hemodynamic effects of therapeutic agents such as glucagon-like receptor agonists (GLP-1RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2-i) in an attempt to characterise the mechanisms leading to their nephroprotective effects. The few available studies on renal substrate uptake are discussed. In the near future, these imaging modalities will hopefully become widely available with researchers more acquainted with them, gaining insights into the complex renal pathophysiology in acute and chronic diseases
    • …
    corecore