343 research outputs found
Tactical interaction and integration : a study in warfare in the Hellenistic period from Philip II to the Battle of Pydna
PhD ThesisIn many ways the Hellenistic period has been the poor relation as far as
military studies have been'concerned. Even quite comprehensive works on
ancient warfare deal with this period in a relatively cursory manner, scholars
concentrating on hoplite warfare or Roman military systems to the detriment
of the Hellenistic period. To make matters worse, a historiographical
tradition exists which places the generals and armies of the period firmly in
the shadow of Alexander the Great. Hellenistic warfare has therefore been
seen as unimaginative and stereotypical, dominated by armies which used
cumbersome and outmoded tactics, and which were led by generals
outstanding only in their mediocrity.
This thesis is an attempt to redress the balance. I have sought to form a
detailed picture of the Hellenistic military machine from the ancient sources
and to test modem theories about its operation. The format of the thesis
reflects these objectives. As my research progressed it soon became apparent
that Hellenistic armies were not the cumbersome devices portrayed in many
modem works and that they were composed of a series of interlocking
tactical systems that could be viewed on a series of levels, the highest being
the army itself
Pax5 maintains cellular identity by repressing gene expression throughout B cell differentiation.
The transcription factor Pax5 is required for many aspects of B-lymphopoiesis including lineage commitment, immunoglobulin rearrangement, pre-BCR signalling and mature B cell survival. Pax5 regulates B cell lineage commitment by concurrently activating B cell specific gene expression as well as suppressing the expression of genes associated with non-B cell fates. The identity of the molecular targets of Pax5-mediated gene repression is the subject of much current interest. Recent studies have documented the essential nature of the Pax5 repression of the stem cell transcriptional program, as well as the silencing of lineage inappropriate gene expression, for B cell development. Surprisingly the repression of genes by Pax5 continues throughout lymphopoiesis, with the loss of Pax5 in mature B cell resulting in the reactivation of the same Pax5 targets during plasma cell differentiation. These recent insights into the mechanism of action of Pax5 in controlling B cell identity will be discussed
Human lymphoma mutations reveal CARD11 as the switch between self-antigen-induced B cell death or proliferation and autoantibody production
Self-tolerance and immunity are actively acquired in parallel through a poorly understood ability of antigen receptors to switch between signaling death or proliferation of antigenbinding lymphocytes in different contexts. It is not known whether this tolerance-immunity switch requires global rewiring of the signaling apparatus or if it can arise from a single molecular change. By introducing individual CARD11 mutations found in human lymphomas into antigen-activated mature B lymphocytes in mice, we find here that lymphoma-derived CARD11 mutations switch the effect of self-antigen from inducing B cell death into T cell- independent proliferation, Blimp1-mediated plasmablast differentiation, and autoantibody secretion. Our findings demonstrate that regulation of CARD11 signaling is a critical switch governing the decision between death and proliferation in antigen-stimulated mature B cells and that mutations in this switch represent a powerful initiator for aberrant B cell responses in vivo
Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors
PU.1 is an Ets family transcription factor that is essential for fetal liver hematopoiesis. We have generated a PU.1gfp reporter strain that allowed us to examine the expression of PU.1 in all hematopoietic cell lineages and their early progenitors. Within the bone marrow progenitor compartment, PU.1 is highly expressed in the hematopoietic stem cell, the common lymphoid progenitor, and a proportion of common myeloid progenitors (CMPs). Based on Flt3 and PU.1 expression, the CMP could be divided into three subpopulations, Flt3+ PU.1hi, Flt3β PU.1hi, and Flt3β PU.1lo CMPs. Colony-forming assays and in vivo lineage reconstitution demonstrated that the Flt3+ PU.1hi and Flt3β PU.1hi CMPs were efficient precursors for granulocyte/macrophage progenitors (GMPs), whereas the Flt3β PU.1lo CMPs were highly enriched for committed megakaryocyte/erythrocyte progenitors (MEPs). CMPs have been shown to rapidly differentiate into GMPs and MEPs in vitro. Interestingly, short-term culture revealed that the Flt3+ PU.1hi and Flt3β PU.1hi CMPs rapidly became CD16/32high (reminiscent of GMPs) in culture, whereas the Flt3β PU.1lo CMPs were the immediate precursors of the MEP. Thus, down-regulation of PU.1 expression in the CMP is the first molecularly identified event associated with the restriction of differentiation to erythroid and megakaryocyte lineages
Recommended from our members
Remarks on the Cost of Using a Remote Procedure Call Facility ; CU-CS-426-89
The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimerβs disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes
Transcriptional regulation of dendritic cell development and function
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases
A requirement for CD45 distinguishes Ly49D-mediated cytokine and chemokine production from killing in primary natural killer cells
Engagement of receptors on the surface of natural killer (NK) cells initiates a biochemical cascade ultimately triggering cytokine production and cytotoxicity, although the interrelationship between these two outcomes is currently unclear. In this study we investigate the role of the cell surface phosphatase CD45 in NK cell development and intracellular signaling from activating receptors. Stimulation via the major histocompatibility complex Iβbinding receptor, Ly49D on CD45β/β primary NK cells resulted in the activation of phosphoinositide-3-kinase and normal cytotoxicity but failed to elicit a range of cytokines and chemokines. This blockage is associated with impaired phosphorylation of Syk, Vav1, JNK, and p38, which mimics data obtained using inhibitors of the src-family kinases (SFK). These data, supported by analogous findings after CD16 and NKG2D stimulation of CD45β/β primary NK cells, place CD45 upstream of SFK in NK cells after stimulation via immunoreceptor tyrosine-based activation motif-containing receptors. Thus we identify CD45 as a pivotal enzyme in eliciting a precise subset of NK cell responses
Positive Feedback Between PU.1 and the Cell Cycle Controls Myeloid Differentiation
Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycleβcoupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate
PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis
Although the transcription factor PU.1 is essential for fetal lymphomyelopoiesis, we unexpectedly found that elimination of the gene in adult mice allowed disturbed hematopoiesis, dominated by granulocyte production. Impaired production of lymphocytes was evident in PU.1-deficient bone marrow (BM), but myelocytes and clonogenic granulocytic progenitors that are responsive to granulocyte colony-stimulating factor or interleukin-3 increased dramatically. No identifiable common lymphoid or myeloid progenitor populations were discernable by flow cytometry; however, clonogenic assays suggested an overall increased frequency of blast colony-forming cells and BM chimeras revealed existence of long-term self-renewing PU.1-deficient cells that required PU.1 for lymphoid, but not granulocyte, generation. PU.1 deletion in granulocyte-macrophage progenitors, but not in common myeloid progenitors, resulted in excess granulocyte production; this suggested specific roles of PU.1 at different stages of myeloid development. These findings emphasize the distinct nature of adult hematopoiesis and reveal that PU.1 regulates the specification of the multipotent lymphoid and myeloid compartments and restrains, rather than promotes, granulopoiesis
- β¦