329 research outputs found
Physical determinants of vesicle mobility and supply at a central synapse
Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling
The alpha 6 subunit of the GABA(A) receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells
Although three distinct subunits seem to be sufficient to form a functional pentameric GABAA receptor channel, cerebellar granule cells express nRNA for nine subunits. They receive GABAergic input from a relatively homogenous population of Golgi cells. It is not known whether all subunits are distributed similarly on the surface of granule cells or whether some of them have differential subcellular distribution resulting in distinct types of synaptic and/or extrasynaptic channels. Antibodies to different parts of the alpha 6 and alpha 1 subunits of the GABAA receptor and electron microscopic immunogold localization were used to determine the precise subcellular distribution of these subunits in relation to specific synaptic inputs. Both subunits were present in the extrasynaptic dendritic and somatic membranes at lower densities than in synaptic junctions. The alpha 6 and alpha 1 subunits were colocalized in many GABAergic Golgi synapses, demonstrating that both subunits are involved in synaptic transmission in the same synapse. Synapses immunopositive for only one of the alpha subunits were also found. The alpha 6, but not the alpha 1, subunit was also concentrated in glutamatergic mossy fiber synapses, indicating that the alpha 6 subunit may have several roles depending on its different locations. The results demonstrate a partially differential synaptic targeting of two distinct GABAA receptor subunits on the surface of the same type of neuron
Early reionization by decaying particles in the light of three year WMAP data
We study the reionization histories where ionizing UV photons are emitted
from decaying particles, in addition to usual contributions from stars and
quasars, taking account of the fact that the universe is not fully ionized
until z = 6 as observed by Sloan Digital Sky Survey. Likelihood analysis of the
three-year data from the WMAP (Wilkinson Microwave Anisotropy Probe) severely
constrains the decaying particle scenario.In particular, the decaying particle
with relatively short lifetime is not favored by the polarization data.Comment: 9 pages, 11 figure
Recommended from our members
TKI type switching overcomes ROS1 L2086F in ROS1 fusion-positive cancers
The grammar in this abstract is generally correct, but there’s a minor issue with sentence structure in one part. Here’s a slightly revised version with improved grammar and flow: ROS1 tyrosine kinase inhibitors (TKIs) are highly effective in ROS1-positive non-small cell lung cancer, but resistance remains a challenge. We investigated the activity of various TKIs against wildtype and mutant ROS1, focusing on the emerging L2086F resistance mutation. Using Ba/F3 and NIH3T3 cell models, CRISPR/Cas9-edited isogenic wildtype and mutant patient-derived cell lines, and in vivo tumor growth studies, we compared type I TKIs (crizotinib, entrectinib, taletrectinib, lorlatinib, and repotrectinib) to type II TKIs (cabozantinib and merestinib) and the type I FLT3 inhibitor gilteritinib. The ROS1 L2086F mutant kinase showed resistance to type I TKIs, while type II TKIs retained activity. Gilteritinib inhibited both wildtype and L2086F mutant ROS1 but was ineffective against the G2032R mutation. Structural analyses revealed distinct binding poses for cabozantinib and gilteritinib, explaining their efficacy against L2086F. Clinical cases demonstrated cabozantinib’s effectiveness in patients with TKI-resistant, ROS1 L2086F mutant NSCLCs. This study provides the first comprehensive report of ROS1 L2086F in the context of later-generation TKIs, including macrocyclic inhibitors. While cabozantinib effectively inhibits ROS1 L2086F, its multi-kinase inhibitor nature highlights the need for more selective and better-tolerated TKIs to overcome kinase-intrinsic resistance. Gilteritinib may offer an alternative for targeting ROS1 L2086F with distinct off-target toxicities, but further studies are required to fully evaluate its potential in this setting.</p
Measuring the cosmological bulk flow using the peculiar velocities of supernovae
We study large-scale coherent motion in our universe using the existing Type
IA supernovae data. If the recently observed bulk flow is real, then some
imprint must be left on supernovae motion. We run a series of Monte Carlo
Markov Chain runs in various redshift bins and find a sharp contrast between
the z 0.05 data. The$z < 0.05 data are consistent with the bulk
flow in the direction (l,b)=({290^{+39}_{-31}}^{\circ},
{20^{+32}_{-32}}^{\circ}) with a magnitude of v_bulk = 188^{+119}_{-103} km/s
at 68% confidence. The significance of detection (compared to the null
hypothesis) is 95%. In contrast, z > 0.05 data (which contains 425 of the 557
supernovae in the Union2 data set) show no evidence for bulk flow. While the
direction of the bulk flow agrees very well with previous studies, the
magnitude is significantly smaller. For example, the Kashlinsky, et al.'s
original bulk flow result of v_bulk > 600 km/s is inconsistent with our
analysis at greater than 99.7% confidence level. Furthermore, our best-fit bulk
flow velocity is consistent with the expectation for the \Lambda CDM model,
which lies inside the 68% confidence limit.Comment: Version published in JCA
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses
Many contemporary studies have shown that astrocytes play a significant role
in modulating both short and long form of synaptic plasticity. There are very
few experimental models which elucidate the role of astrocyte over Long-term
Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of
astrocytes in induction of LTP at single hippocampal synapses. They suggested a
purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA)
Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic
induction were not investigated. Here, in this article, we propose a
mathematical model for astrocyte modulated LTP which successfully emulates the
experimental findings of Perea & Araque (2007). Our study suggests the role of
retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically
modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to
appear
Right Isomerism of the Brain in Inversus Viscerum Mutant Mice
Left-right (L-R) asymmetry is a fundamental feature of higher-order neural function. However, the molecular basis of brain asymmetry remains unclear. We recently reported L-R asymmetry of hippocampal circuitry caused by differential allocation of N-methyl-D-aspartate receptor (NMDAR) subunit GluRε2 (NR2B) in hippocampal synapses. Using electrophysiology and immunocytochemistry, here we analyzed the hippocampal circuitry of the inversus viscerum (iv) mouse that has a randomized laterality of internal organs. The iv mouse hippocampus lacks L-R asymmetry, it exhibits right isomerism in the synaptic distribution of the ε2 subunit, irrespective of the laterality of visceral organs. This independent right isomerism of the hippocampus is the first evidence that a distinct mechanism downstream of the iv mutation generates brain asymmetry
- …