918 research outputs found

    Thwarting endogenous stress: BRCA protects against aldehyde toxicity

    Get PDF
    Homologous recombination (HR) and the Fanconi Anemia (FA) pathways constitute essential repair pathways for DNA damage, which includes DNA double-stranded breaks (DSB) and inter-strand cross-links (ICL), respectively. Germline mutations affecting a single copy of the HR factors BRCA1 and BRCA2 predispose individuals to cancers of the breast, ovary, prostate, and pancreas. Cells deficient for BRCA proteins display high levels of genome instability due to defective repair of endogenous DSBs and are also exquisitely sensitive to DNA-damaging agents. In addition to their roles in repair of DSBs and ICLs, HR and FA proteins have a genetically separable function in the protection of stalled DNA replication forks from nuclease-mediated degradation (Schlacher et al, ). Although it has been hypothesized that loss of functional HR and ICL repair is the primary cause of cancer in BRCA- and FA-deficient patients (Prakash et al, ), the contribution of replication fork instability associated with the degradation of nascent DNA remains unclear. Two recent papers explain how endogenous toxins render cells vulnerable to genomic instability, which explains how the BRCA/FA pathway suppresses tumorigenesis (Tacconi et al, ; Tan et al, )

    Histone H2AX Is Phosphorylated at Sites of Retroviral DNA Integration but Is Dispensable for Postintegration Repair

    Get PDF
    The histone variant H2AX is rapidly phosphorylated (denoted {gamma}H2AX) in large chromatin domains (foci) flanking double strand DNA (dsDNA) breaks that are produced by ionizing radiation or genotoxic agents and during V(D)J recombination. H2AX-deficient cells and mice demonstrate increased sensitivity to dsDNA break damage, indicating an active role for {gamma}H2AX in DNA repair; however, {gamma}H2AX formation is not required for V(D)J recombination. The latter finding has suggested a greater dependence on {gamma}H2AX for anchoring free broken ends versus ends that are held together during programmed breakage-joining reactions. Retroviral DNA integration produces a unique intermediate in which a dsDNA break in host DNA is held together by the intervening viral DNA, and such a reaction provides a useful model to distinguish {gamma}H2AX functions. We found that integration promotes transient formation of {gamma}H2AX at retroviral integration sites as detected by both immunocytological and chromatin immunoprecipitation methods. These results provide the first direct evidence for the association of newly integrated viral DNA with a protein species that is an established marker for the onset of a DNA damage response. We also show that H2AX is not required for repair of the retroviral integration intermediate as determined by stable transduction. These observations provide independent support for an anchoring model for the function of {gamma}H2AX in chromatin repair

    Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice

    Get PDF
    We have examined the regulatory role of the individual components of the immunoglobulin antigen receptor in B-cell development by transgenic complementation of Rag-1 deficient (Rag-1⁻) mice. Complementation with a membrane µ heavy chain (µHC) gene allows progression of developmentally arrested Rag-1⁻ pro-B-cells to the small pre-B cell stage, whereas the introduction of independently integrated µHC and κ light chain (κLC) transgenes promotes the appearance of peripheral lymphocytes which, however, remain unresponsive to external stimuli. Complete reconstitution of the B-cell lineage and the emergence of functionally nature Rag-1⁻ peripheral B cells is achieved by the introduction of cointegrated heavy and light chain transgenes encoding an anti-H-2^k antibody. This experimental system demonstrates the competence of the µHC and κLC to direct and regulate the sequential stages of B-cell differentiation, defines the time at which negative selection of self-reactive B cells occurs, and shows that elimination of these cells occurs equally well in the absence of Rag-1 as in its presence. These data also support the hypothesis that Rag-1 directly participates in the V(D)J recombination process

    Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes

    Get PDF
    This study establishes that dendritic cells (DC) are the critical accessory cells for the development of anti-trinitrophenol (TNP) cytotoxic T lymphocytes (CTL) in vitro. We developed a model in which nylon wool-nonadherent spleen cells were used both as the responding and stimulating cells, the latter having been TNP-modified and x-irradiated. Thy-1-bearing CTL developed in C57BL/6, B6D2F1, and CBA mice only when small numbers of DC were added. Maximal responses in 5-d cultures were achieved with 0.5-1 DC/100 responding T cells. The DC did not have to be TNP modified directly. Anti-Ia and complement inactivated accessory cells, whereas similar treatment of the responders had no effect. DC exposed to ultraviolet radiation were ineffective, but x-irradiated DC were fully active. Culture media from DC, or from DC-nylon wool-passed spleen T cell cocultures that contained abundant CTL, would not substitute for viable DC. Enriched preparations of macrophages (MΦ) were obtained from blood, peritoneal cavity, and spleens of BCG-immune and unprimed mice. MΦ added at doses of 0.2-4% were weak or inactive as accessory cells. The level of Ia antigens on test MΦ populations was quantitated and visualized by binding of a radioiodinated monoclonal anti-I-A(b,d) antibody, clone B-21. MΦ that bore substantial amounts of Ia from all organs were weak accessory cells. Addition of MΦ to DC-T cell cocultures produced inhibitory effects, usually at a dose of 2% MΦ. In contrast, 0.5% Ia-bearing MΦ from BCG-immune boosted mice inhibited \u3e80% of the DC-mediated CTL response. Addition of indomethacin reversed MΦ inhibition, and 10-9M prostaglandin E2 in turn blocked the indomethacin effect. Indomethacin also restored a low level of accessory cell function in immune-boosted adherent peritoneal cells, but not in preparations of monocytes and spleen MΦ. Small numbers of DC were identified in preparations of immune-boosted peritoneal cells and may have accounted for the observed accessory activity. We conclude that the development of anti-TNP CTL is an immune response in which (a) DC are the critical accessory cells; (b) Ia-bearing MΦ are weak or inactive; and (c) MΦ can inhibit DC-mediated response by an indomethacin-sensitive mechanism

    The role of membrane receptors for C3b and C3d in phagocytosis.

    Full text link

    Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses

    Get PDF
    Resistance to several prevalent infectious diseases requires both cellular and humoral immune responses. T cell immunity is initiated by mature dendritic cells (DCs) in lymphoid organs, whereas humoral responses to most antigens require further collaboration between primed, antigen-specific helper T cells and naive or memory B cells. To determine whether antigens delivered to DCs in lymphoid organs induce T cell help for antibody responses, we targeted a carrier protein, ovalbumin (OVA), to DCs in the presence of a maturation stimulus and assayed for antibodies to a hapten, (4-hydroxy-3-nitrophenyl) acetyl (NP), after boosting with OVA-NP. A single DC-targeted immunization elicited long-lived T cell helper responses to the carrier protein, leading to large numbers of antibody-secreting cells and high titers of high-affinity antihapten immunoglobulin Gs. Small doses of DC-targeted OVA induced higher titers and a broader spectrum of anti-NP antibody isotypes than large doses of OVA in alum adjuvant. Similar results were obtained when the circumsporozoite protein of Plasmodium yoelii was delivered to DCs. We conclude that antigen targeting to DCs combined with a maturation stimulus produces broad-based and long-lived T cell help for humoral immune responses

    TRAF2 Is Essential for JNK but Not NF-κB Activation and Regulates Lymphocyte Proliferation and Survival

    Get PDF
    AbstractTRAF2 is believed to mediate the activation of NF-κB and JNK induced by the tumor necrosis factor receptor (TNFR) superfamily, which elicits pleiotropic responses in lymphocytes. We have investigated the physiological roles of TRAF2 in these processes by expressing a lymphocyte-specific dominant negative form of TRAF2, thereby blocking this protein's effector function. We find that the TNFR superfamily signals require TRAF2 for activation of JNK but not NF-κB. In addition, we show that TRAF2 induces NF-κB–independent antiapoptotic pathways during TNF-induced apoptosis. Inhibition of TRAF2 leads to splenomegaly, lymphadenopathy, and an increased number of B cells. These findings indicate that TRAF2 is involved in the regulation of lymphocyte function and growth in vivo

    Relationship between intact HIV-1 proviruses in circulating CD4+ T cells and rebound viruses emerging during treatment interruption.

    Get PDF
    Combination antiretroviral therapy controls but does not cure HIV-1 infection because a small fraction of cells harbor latent viruses that can produce rebound viremia when therapy is interrupted. The circulating latent virus reservoir has been documented by a variety of methods, most prominently by viral outgrowth assays (VOAs) in which CD4+ T cells are activated to produce virus in vitro, or more recently by amplifying proviral near full-length (NFL) sequences from DNA. Analysis of samples obtained in clinical studies in which individuals underwent analytical treatment interruption (ATI), showed little if any overlap between circulating latent viruses obtained from outgrowth cultures and rebound viruses from plasma. To determine whether intact proviruses amplified from DNA are more closely related to rebound viruses than those obtained from VOAs, we assayed 12 individuals who underwent ATI after infusion of a combination of two monoclonal anti-HIV-1 antibodies. A total of 435 intact proviruses obtained by NFL sequencing were compared with 650 latent viruses from VOAs and 246 plasma rebound viruses. Although, intact NFL and outgrowth culture sequences showed similar levels of stability and diversity with 39% overlap, the size of the reservoir estimated from NFL sequencing was larger than and did not correlate with VOAs. Finally, intact proviruses documented by NFL sequencing showed no sequence overlap with rebound viruses; however, they appear to contribute to recombinant viruses found in plasma during rebound

    Immunogenicity of a Prime-Boost Vaccine Containing the Circumsporozoite Proteins of Plasmodium vivax in Rodents

    Get PDF
    Plasmodium vivax is the most widespread and the second most prevalent malaria-causing species in the world. Current measures used to control the transmission of this disease would benefit from the development of an efficacious vaccine. in the case of the deadly parasite P. falciparum, the recombinant RTS,S vaccine containing the circumsporozoite antigen (CSP) consistently protects 30 to 50% of human volunteers against infection and is undergoing phase III clinical trials in Africa with similar efficacy. These findings encouraged us to develop a P. vivax vaccine containing the three circulating allelic forms of P. vivax CSP. Toward this goal, we generated three recombinant bacterial proteins representing the CSP alleles, as well as a hybrid polypeptide called PvCSP-All-CSP-epitopes. This hybrid contains the conserved N and C termini of P. vivax CSP and the three variant repeat domains in tandem. We also generated simian and human recombinant replication-defective adenovirus vectors expressing PvCSP-All-CSP-epitopes. Mice immunized with the mixture of recombinant proteins in a formulation containing the adjuvant poly(I.C) developed high and long-lasting serum IgG titers comparable to those elicited by proteins emulsified in complete Freund's adjuvant. Antibody titers were similar in mice immunized with homologous (protein-protein) and heterologous (adenovirus- protein) vaccine regimens. the antibodies recognized the three allelic forms of CSP, reacted to the repeated and nonrepeated regions of CSP, and recognized sporozoites expressing the alleles VK210 and VK247. the vaccine formulations described in this work should be useful for the further development of an anti-P. vivax vaccine.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)PNPDCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo, Escola Paulista Med, Ctr Terapia Celular & Mol CTCMol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWistar Inst Anat & Biol, Philadelphia, PA 19104 USAMalaria Vaccine & Drug Dev Ctr, Cali, ColombiaUniv Fed Santa Catarina, Dept Microbiol Imunol & Parasitol, Florianopolis, SC, BrazilUniv São Paulo, Fac Ciencias Farmaceut, Dept Anal Clin & Toxicol, São Paulo, BrazilNYU, Sch Med, Dept Pathol, Michael Heidelberger Div, New York, NY USAUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Terapia Celular & Mol CTCMol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilFAPESP: 2009/15432-4FAPESP: 2012/13032-5CNPq: 471087/2013-0Web of Scienc
    corecore