848 research outputs found
The Iron Unresolved Transition Array in Active Galactic Nuclei
The unresolved transition array (UTA) of iron M-shell ions is a prominent
absorption feature in the X-ray spectrum of many active galactic nuclei (AGNs).
Modeling photoionized plasmas in attempt to match the observed silicon and
oxygen lines fail to predict the level of ionization of iron as inferred by
this feature. It is suggested that the discrepancy is due to underestimation of
the low-temperature dielectronic recombination rates for iron M-shell ions.
Modified ionization balance calculations, based on new (guessed) atomic data,
support this idea. The results are shown and compared to the global properties
of several observed UTAs. Implications for AGN absorbing gas are discussed
including an analysis of the ionization parameter distribution in such sources.
The need for real calculations of such atomic data is stressed.Comment: 5 pages, 4 figures, accepted by Ap
Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case
We describe a non-LTE photoionization code to calculate the wind structure
and emergent spectrum of a red giant wind illuminated by the hot component of a
symbiotic binary system. We consider spherically symmetric winds with several
different velocity and temperature laws and derive predicted line fluxes as a
function of the red giant mass loss rate, \mdot. Our models generally match
observations of the symbiotic stars EG And and AG Peg for \mdot about 10^{-8}
\msunyr to 10^{-7} \msunyr. The optically thick cross- section of the red giant
wind as viewed from the hot component is a crucial parameter in these models.
Winds with cross-sections of 2--3 red giant radii reproduce the observed
fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models
favor winds with acceleration regions that either lie far from the red giant
photosphere or extend for 2--3 red giant radii.Comment: 51 pages, LaTeX including three tables, requires 15 Encapsulated
Postscript figures, to appear in Ap
Dielectronic recombination and stability of warm gas in AGN
Understanding the thermal equilibrium (stability) curve may offer insights
into the nature of the warm absorbers often found in active galactic nuclei.
Its shape is determined by factors like the spectrum of the ionizing continuum
and the chemical composition of the gas. We find that the stability curves
obtained under the same set of the above mentioned physical factors, but using
recently derived dielectronic recombination rates, give significantly different
results, especially in the regions corresponding to warm absorbers, leading to
different physical predictions. Using the current rates we find a larger
probability of having thermally stable warm absorber at 10^5 \kel than
previous predictions and also a greater possibility for its multiphase nature.
the results obtained with the current dielectronic recombination rate
coefficients are more reliable because the warm absorber models along the
stability curve have computed coefficient values, whereas previous calculations
relied on guessed averages for the same due to lack of available data.Comment: 5 pages, 3 figures, Accepted for publication in MNRAS Letters. The
definitive version is available at
http://www3.interscience.wiley.com/cgi-bin/hom
Modeling RR Tel through the Evolution of the Spectra
We investigate the evolution of RR Tel after the outburst by fitting the
emission spectra in two epochs. The first one (1978) is characterized by large
fluctuations in the light curve and the second one (1993) by the slow fading
trend. In the frame of a colliding wind model two shocks are present: the
reverse shock propagates in the direction of the white dwarf and the other one
expands towards or beyond the giant. The results of our modeling show that in
1993 the expanding shock has overcome the system and is propagating in the
nearby ISM. The large fluctuations observed in the 1978 light curve result from
line intensity rather than from continuum variation. These variations are
explained by fragmentation of matter at the time of head-on collision of the
winds from the two stars. A high velocity (500 km/s) wind component is revealed
from the fit of the SED of the continuum in the X-ray range in 1978, but is
quite unobservable in the line profiles. The geometrical thickness of the
emitting clumps is the critical parameter which can explain the short time
scale variabilities of the spectrum and the trend of slow line intensity
decrease.Comment: 26 pages, LaTeX (including 5 Tables) + 6 PostScript figures. To
appear in "The Astrophysical Journal
Silicates in D-type symbiotic stars: an ISO overview
We investigate the IR spectral features of a sample of D-type symbiotic
stars. Analyzing unexploited ISO-SWS data, deriving the basic observational
parameters of dust bands and comparing them with respect to those observed in
other astronomical sources, we try to highlight the effect of environment on
grain chemistry and physic. We find strong amorphous silicate emission bands at
10 micron and 18 micron in a large fraction of the sample. The analysis of the
10 micron band, along with a direct comparison with several astronomical
sources, reveals that silicate dust in symbiotic stars shows features between
the characteristic circumstellar environments and the interstellar medium. This
indicates an increasing reprocessing of grains in relation to specific
symbiotic behavior of the objects. A correlation between the central wavelength
of the 10 and 18 micron dust bands is found. By the modeling of IR spectral
lines we investigate also dust grains conditions within the shocked nebulae.
Both the unusual depletion values and the high sputtering efficiency might be
explained by the formation of SiO moleculae, which are known to be a very
reliable shock tracer. We conclude that the signature of dust chemical
disturbance due to symbiotic activity should be looked for in the outer,
circumbinary, expanding shells where the environmental conditions for grain
processing might be achieved. Symbiotic stars are thus attractive targets for
new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A
The Mid-infrared Fine-structure Lines of Neon as an Indicator of Star For mation Rate in Galaxies
The fine-structure lines of singly ([Ne II] 12.8 micron) and doubly ([Ne III]
15.6 micron) ionized neon are among the most prominent features in the
mid-infrared spectra of star-forming regions, and have the potential to be a
powerful new indicator of the star formation rate in galaxies. Using a sample
of star-forming galaxies with measurements of the fine-structure lines
available from the literature, we show that the sum of the [Ne II] and [Ne III]
luminosities obeys a tight, linear correlation with the total infrared
luminosity, over 5 orders of magnitude in luminosity. We discuss the formation
of the lines and their relation with the Lyman continuum luminosity. A simple
calibration between star formation rate and the [Ne II]+[Ne III] luminosity is
presented.Comment: To appear in ApJ. 8 page
Signature of Electron Capture in Iron-Rich Ejecta of SN 2003du
Late-time near-infrared and optical spectra are presented for the
normal-bright SN2003du. At about 300 days after the explosion, the emission
profiles of well isolated [FeII] lines (in particular that of the strong
1.644mu feature) trace out the global kinematic distribution of radioactive
material in the expanding. In SN2003du, the 1.644 mu [FeII] line shows a
flat-topped, profile, indicative of a thick but hollow-centered expanding
shell, rather than a strongly-peaked profile that would be expected from a
``center-filled'' distribution.Based on detailed models for exploding
Chandrasekhar mass white dwarfs, we show that the feature is consistent with
spherical explosion models.Our model predicts central region of non-radioactive
electron-capture elements up to 2500--3000km/s as a consequence of burning
under high density, and an extended region of 56Ni up to 9,000--10,000km/s.
Furthermore our analysis indicates that the 1.644mu [FeII] profile is not
consistent with strong mixing between the regions of electron- capture isotopes
and the 56Ni layers as is predicted by detailed 3D models for nuclear
deflagration fronts. We discuss the possibility that the flat-topped profile
could be produced as a result of an infrared catastrophe and conclude that such
an explanation is unlikely. We put our results in context to other SNeIa and
briefly discuss the implications of our result for the use of SNe Ia as
cosmological standard candles.Comment: 12 pages + 8 figures, ApJ (in press, Dec. 20, 2004) For high
resolution figures send E-mail to [email protected]
The Unusual Object IC 2144/MWC 778
IC 2144 is a small reflection nebula located in the zone of avoidance near
the Galactic anticenter. It has been investigated here largely on the basis of
Keck/HIRES optical spectroscopy (R ~ 48,000) and a SpeX spectrogram in the
near-IR (R = 2000) obtained at the NASA IRTF. The only star in the nebula that
is obvious in the optical or near-IR is the peculiar emission-line object MWC
778 (V = 12.8), which resembles a T Tauri star in some respects. What appear to
be F- or G-type absorption features are detectable in its optical region under
the very complex emission line spectrum; their radial velocity agrees with the
CO velocity of the larger cloud in which IC 2144 is embedded. There are
significant differences between the spectrum of the brightest area of the
nebula and of MWC 778, the presumed illuminator, an issue discussed in some
detail. The distance of IC 2144 is inferred to be about 1.0 kpc by reference to
other star-forming regions in the vicinity. The extinction is large, as
demonstrated by [Fe II] emission line ratios in the near-IR and by the strength
of the diffuse interstellar band spectrum; a provisional value of A_V of 3.0
mag was assumed. The SED of MWC 778 rises steeply beyond about 1 m, with a
slope characteristic of a Class I source. Integration of the flux distribution
leads to an IR luminosity of about 510 L_solar. If MWC 778 is indeed a F- or
G-type pre--main-sequence star several magnitudes above the ZAMS, a population
of faint emission Halpha stars would be expected in the vicinity. Such a
search, like other investigations that are recommended in this paper, has yet
to be carried out.Comment: 36 pages, 13 figures, accepted by A
A Comparison of Ultraviolet, Optical, and X-Ray Imagery of Selected Fields in the Cygnus Loop
During the Astro-1 and Astro-2 Space Shuttle missions in 1990 and 1995, far
ultraviolet (FUV) images of five 40' diameter fields around the rim of the
Cygnus Loop supernova remnant were observed with the Ultraviolet Imaging
Telescope (UIT). These fields sampled a broad range of conditions including
both radiative and nonradiative shocks in various geometries and physical
scales. In these shocks, the UIT B5 band samples predominantly CIV 1550 and the
hydrogen two-photon recombination continuum. Smaller contri- butions are made
by emission lines of HeII 1640 and OIII] 1665. We present these new FUV images
and compare them with optical Halpha and [OIII], and ROSAT HRI X-ray images.
Comparing the UIT images with those from the other bands provides new insights
into the spatial variations and locations of these different types of emission.
By comparing against shock model calculations and published FUV spectroscopy at
select locations, we surmise that resonance scattering in the strong FUV
permitted lines is widespread in the Cygnus Loop, especially in the bright
optical filaments typically selected for observation in most previous studies.Comment: 21 pages with 10 figures. See http://www.pha.jhu.edu/~danforth/uit/
for full-resolution figure
The Effects of Dark Matter Decay and Annihilation on the High-Redshift 21 cm Background
The radiation background produced by the 21 cm spin-flip transition of
neutral hydrogen at high redshifts can be a pristine probe of fundamental
physics and cosmology. At z~30-300, the intergalactic medium (IGM) is visible
in 21 cm absorption against the cosmic microwave background (CMB), with a
strength that depends on the thermal (and ionization) history of the IGM. Here
we examine the constraints this background can place on dark matter decay and
annihilation, which could heat and ionize the IGM through the production of
high-energy particles. Using a simple model for dark matter decay, we show
that, if the decay energy is immediately injected into the IGM, the 21 cm
background can detect energy injection rates >10^{-24} eV cm^{-3} sec^{-1}. If
all the dark matter is subject to decay, this allows us to constrain dark
matter lifetimes <10^{27} sec. Such energy injection rates are much smaller
than those typically probed by the CMB power spectra. The expected brightness
temperature fluctuations at z~50 are a fraction of a mK and can vary from the
standard calculation by up to an order of magnitude, although the difference
can be significantly smaller if some of the decay products free stream to lower
redshifts. For self-annihilating dark matter, the fluctuation amplitude can
differ by a factor <2 from the standard calculation at z~50. Note also that, in
contrast to the CMB, the 21 cm probe is sensitive to both the ionization
fraction and the IGM temperature, in principle allowing better constraints on
the decay process and heating history. We also show that strong IGM heating and
ionization can lead to an enhanced H_2 abundance, which may affect the earliest
generations of stars and galaxies.Comment: submitted to Phys Rev D, 14 pages, 8 figure
- …