11 research outputs found

    A compact and sustainable electronic module for silicon photomultipliers

    Full text link
    This article presents the development of a cost-effective and efficient electronic module for silicon photomultipliers (SiPM). The electronic module combines essential functionalities, such as a high voltage power supply, a preamplifier, and a signal comparator, into a compact circuit. A high voltage power supply with a range of 30 to 140 V provides a stable bias voltage with 0.01 V accuracy for the SiPMs, while a preamplifier with 40 gain and 250 MHz bandwidth enables signal amplification necessary to extract weak signals. The comparator converts an analogue signal (higher than 8 mV) into TTL (transistor-transistor logic), which makes it easy to process and analyze with digital devices such as microcontrollers or make it possible to send signals over long distances by a cable. The module has been tested using an LYSO scintillator and a SiPM called a micropixel avalanche photodiode (MAPD). It provides a more effective and efficient solution for reading out signals from SiPMs in a variety of applications, delivering reliable and accurate results in real-time.Comment: an article, 9 pages, 6 figure

    Portable neutron/gamma scintillation detector for status monitoring of accelerator-driven neutron source IREN

    Full text link
    Accelerator-driven system (ADS) facilities world-wide opens new opportunities for nuclear physics investigations, so that a high flux of neutrons through spallation reactions can be produced at these facilities. It is known that the measurement, continuous monitoring and optimization of the particle accelerator beam intensity are among the most important actions in the operation of such facilities. Considering this point of view, this paper presents a neutron/gamma counter based on a micropixel avalanche photodiode (MAPD) and a plastic scintillator that monitors the status of the accelerator-driven intense resonance neutron source (IREN) facility by measuring the neutron-gamma intensity in the target hall. The electronics of the modular neutron counter has been designed and developed, including a bias voltage source (up to 130 V), a preamplifier (36 gain) and discriminator (>10 mV) circuit. The last product of MAPD (operation voltage- 55 V, PDE- 33 %, total number of pixels- 136900) was used as a photon readout from a plastic scintillator. The sensitive area of MAPD was 3.7*3.7 mm2 and the size of the plastic scintillator 3.7*3.7*30 mm3. The measurement was carried out in the IREN target hall, where it was necessary to monitor not only high neutron fluxes, but also gamma quanta. The experimental results demonstrated a dependence between the count rate of the detector and the frequency of the accelerator, which ranges from 2 to 50 Hz.Comment: 8 pages, 7 figure

    Performance of a plastic scintillator developed using styrene monomer polymerization

    Full text link
    This paper presents a newly developed plastic scintillator produced in collaboration with Turkiye Energy, Nuclear and Mineral Research Agency (TENMAK). The scintillator is manufactured using thermal polymerization of commercially available styrene monomer. The absorption spectrum of the scintillator exhibited two absorption bands at 225 nm and 340 nm, with an absorption edge observed at 410 nm. The wavelength of the emitted light was measured in the range of 400-800 nm, with a maximum intensity at 427 nm. Monoenergetic electrons from the 137Cs source were used to evaluate the characteristics of the new scintillator, particularly its light yield. As the light readout the MAPD-3NM type silicon photomultiplier array (4 x 4) with an active area of 15 x 15 mm2, assembled using single MAPDs with an active area of 3.7 x 3.7 mm2, was used. The light yield of the scintillator was determined to be 6134 photons/MeV. In addition, the efficiency of the scintillator for gamma rays with an energy of 662 keV was found to be approximately 1.8 %. A CmBe neutron source was employed to evaluate its fast neutron detection performance. However, neutron/gamma discrimination using pulse shape discrimination (charge integration) method was not observed. The results demonstrate the potential of a newly produced plastic scintillator for various applications, particularly in radiation monitoring and detection systems.Comment: 7 pages, 7 figure

    Performance of silicon photomultipliers at low temperature

    No full text
    The performances of silicon photomultipliers with different structures are investigated at low temperature.The first sample is a micro pixel avalanche photodiode with deep buried pixel structure from Zecotek Photonics Inc. The second and third ones are multi-pixel photo counters with a surface pixel design from Hamamatsu Photonics. The influence of temperature on the main parameters of the photodiodes such as photon detection efficiency (PDE), gain, and capacitance was studied in the temperature range from 0C to -120C

    A synchronization and data acquisition system for silicon detectors

    No full text
    A dedicated synchronization bus has been developed and integrated into the FITPix COMBO device. It can be used as Timepix read-out (involving back-side-pulse acquisition) or as a simple spectrometer device—Spectrig (when an external single pad sensor is connected, e.g. Δ E detector). The synchronization bus permits the implementation of a system of up to 32 distinct devices running in clock locked mode while the absolute value of the timestamp is distributed to all devices in the system. Any combination of Timepix or spectrometer devices (up to 32) can be connected-up to create a final measurement set-up. The synchronization bus has also been designed to control a trigger signal and busy signal to allow an effective filtration of unpaired events when coincidence measurement is performed. The system has been tested with a Δ E− E telescope consisting of a thin detector and Timepix. The thin detector has been used for Δ E and the Timepix detector for E measurements. The Δ E detector has an area of 10×10 mm2 and a thickness of 12 μm with non-uniformity of 8%. The area and thickness of Timepix are 14×14 mm2 and 300 μm, respectively. The detection system can provide simultaneous information about position, energy, time and type of registered particles with high synchronization accuracy. Test measurements have been carried out with an alpha particle source (Ra-226) in a vacuum and the results of these measurements are presented in this paper

    A program for data analysis of rare fission mode processes from neutron-induced and spontaneous fissions

    Get PDF
    Rare fission mode processes (ternary or quaternary fission) of low-energy and spontaneous fission of heavy nuclei, in which light charged particles are emitted, are the subject of intense experimental and theoretical studies, since these studies can be attributed to one of the main sources of information on the mechanism of nuclear fission. To study these processes, a detection system has been assembled, consisting of three semiconductor ΔE-E telescopes and a silicon detector. In addition, the program has been developed for proceeding experimental data. This paper has been dedicated to the program written on the basis of ROOT software consisting of many scripts to analyze and/or filtrate ternary and quaternary fission particles among different fission events. The program can proceed long collected files in ASCII and binary formats, correlate results from all detectors, give results on particle interaction time, coordinates, particle energy and its types. The performance of the program has been tested to proceed ternary fission data from 252Cf spontaneous fission source

    Miniaturized read-out interface “Spectrig MAPD” dedicated for silicon photomultipliers

    No full text
    The new pocket size read-out interface device dedicated for silicon photomultipliers (SiPM) has been designed and developed. While it was designed as a miniaturized and low power device it still provides a wide spectrum of functionality necessary for measurements and testing of SiPMs and SiPM based detectors. Full signal processing has been integrated within the device involving variable gain amplification, filtration and digitization. Signal acquisition can be performed with sampling frequency 400 MSa/s at 12 bit resolution or 600 MSa/s at 8 bit resolution while achieving full waveform capture & download rate about 20 000 events per second. The read-out interface is fully powered from the USB bus allowing operation without need of additional power line connection. An integrated bias source can be set in range from 0V to +200V with 12 bit precision. The read-out interface is primarily dedicated for spectroscopy purposes. There are two input signal channels with different optimization regarding the signal gain to cover a low energy range corresponding to single photo-electron detector response as well as to cover a high energy range corresponding to a detector response operated with scintillator registering gamma radiation in order of MeVs. Both input channels are equipped with fine gain adjustment in range from -9 dB to 26 dB with 1 dB step in addition to the fixed gain of each signal channel. The FPGA based design of the read-out interface allowed implementation of advanced triggering functionality like a data driven trigger, external trigger, gating of trigger to extend readout interface capability even further in a way of complex experiments. A set of functional tests and experiments with SiPM called micropixel avalanche photodiode (MAPD) and MAPD based detectors have been performed to characterize real properties of the read-out interface

    Improvement of parameters of micro-pixel avalanche photodiodes

    No full text
    The paper is concerned with the parameter study of a new generation of micro-pixel avalanche photodiodes (MAPD) with deeply buried pixel structure, also named silicon photomultipliers (SiPM) or multi-pixel photon counter (MPPC). The new MAPD of type MAPD-3NM was manufactured in the frame of collaboration with Zecotek Company. Measurements were carried out and discussed in terms of the important parameters such as the current-voltage and capacitance-voltage characteristic, gain, the temperature coefficient of breakdown voltage, breakdown voltage, and gamma-ray detection performance using an LFS scintillator. The obtained results showed that the newly developed MAPD-3NM photodiode outperformed the previous generation in most parameters and can be successfully applied in space application, medicine, high-energy physics, and security. New proposals are also discussed, for further improvement of the parameters of the MAPD photodiodes that will be produced in the coming years. © 2022 IOP Publishing Ltd and Sissa Medialab.The paper is concerned with the parameter study of a new generation of micro-pixel avalanche photodiodes (MAPD) with deeply buried pixel structure, also named silicon photomultipliers (SiPM) or multi-pixel photon counter (MPPC). The new MAPD of type MAPD-3NM was manufactured in the frame of collaboration with Zecotek Company. Measurements were carried out and discussed in terms of the important parameters such as the current-voltage and capacitance-voltage characteristic, gain, the temperature coefficient of breakdown voltage, breakdown voltage, and gamma-ray detection performance using an LFS scintillator. The obtained results showed that the newly developed MAPD-3NM photodiode outperformed the previous generation in most parameters and can be successfully applied in space application, medicine, high-energy physics, and security. New proposals are also discussed, for further improvement of the parameters of the MAPD photodiodes that will be produced in the coming years. © 2022 IOP Publishing Ltd and Sissa Medialab

    Improvement of parameters of micro-pixel avalanche photodiodes

    No full text
    The paper is concerned with the parameter study of a new generation of micro-pixel avalanche photodiodes (MAPD) with deeply buried pixel structure, also named silicon photomultipliers (SiPM) or multi-pixel photon counter (MPPC). The new MAPD of type MAPD-3NM was manufactured in the frame of collaboration with Zecotek Company. Measurements were carried out and discussed in terms of the important parameters such as the current-voltage and capacitance-voltage characteristic, gain, the temperature coefficient of breakdown voltage, breakdown voltage, and gamma-ray detection performance using an LFS scintillator. The obtained results showed that the newly developed MAPD-3NM photodiode outperformed the previous generation in most parameters and can be successfully applied in space application, medicine, high-energy physics, and security. New proposals are also discussed, for further improvement of the parameters of the MAPD photodiodes that will be produced in the coming years. © 2022 IOP Publishing Ltd and Sissa Medialab.The paper is concerned with the parameter study of a new generation of micro-pixel avalanche photodiodes (MAPD) with deeply buried pixel structure, also named silicon photomultipliers (SiPM) or multi-pixel photon counter (MPPC). The new MAPD of type MAPD-3NM was manufactured in the frame of collaboration with Zecotek Company. Measurements were carried out and discussed in terms of the important parameters such as the current-voltage and capacitance-voltage characteristic, gain, the temperature coefficient of breakdown voltage, breakdown voltage, and gamma-ray detection performance using an LFS scintillator. The obtained results showed that the newly developed MAPD-3NM photodiode outperformed the previous generation in most parameters and can be successfully applied in space application, medicine, high-energy physics, and security. New proposals are also discussed, for further improvement of the parameters of the MAPD photodiodes that will be produced in the coming years. © 2022 IOP Publishing Ltd and Sissa Medialab

    Gamma-ray spectroscopy with MAPD array in the readout of LaBr3:Ce scintillator

    No full text
    This paper presented a new detector module consisting of a micropixel avalanche photodiode (MAPD-3NM), LaBr3:Ce scintillator, and a compact read-out interface system for detecting gamma-rays in a wide energy range. The MAPD array (4 × 4 channels) was assembled using a singleMAPD-3NMcharacterized by its high photon detection efficiency (∼25%),pixel density (10 000 pixels/mm2), lowoperation voltage (74.5 V), and lowdark current. An active area of a singleMAPD-3NMwas 3.7 × 3.7 mm2, while this value was 17 × 17 mm2 for the assembled array with pixel density of 2190 000. The size of the tested LaBr3:Ce scintillator was 15 × 15 × 15 mm3. According to the characteristics of the detector module, a compact read-out interface device (SPECTRIG MAPD) was developed. SPECTRIG MAPD was designed as a miniature device with low power consumption, which continues to provide a wide spectrum of functions needed for measurement and test silicon photomultipliers (SiPM) and scintillation detectors on their basis. The various experiments were implemented to test the detection performance of a detector module to gamma radiation in the range from 30 keV to 4400 keV
    corecore