15 research outputs found

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Fabrication of TiO 2

    No full text

    Hydrogen-Enriched Reduced Graphene Oxide with Enhanced Electrochemical Performance in Lithium Ion Batteries

    No full text
    Hydrogen-enriched reduced graphene oxide (RGO) was achieved using double-oxidized graphene oxide (GO(2)) as an anode in high-performance lithium batteries is reported. GO(2) exhibited a much lower carbon-to-oxygen ratio, lower crystallinity, higher Brunauer-Emmett-Teller surface area, higher pore volume, and higher porosity as compared to graphene oxides produced using the typical modified Hummers method (GO(1)). The two forms of GO were reduced using two different reduction methods: supercritical isopropanol (scIPA) and heat treatment. The four types of RGOs synthesized using GO(1)/GO(2) and scIPA/heat treatment exhibited significantly different chemical, morphological, and textural properties. The galvanostatic charge-discharge properties were highly dependent on the physicochemical properties of the RGOs. The scIPA-reduced GO(2) exhibited superior electrochemical performance as compared to the thermally reduced GO(1)/GO(2) and scIPA-reduced GO(1). Highly reversible capacity (1331 mAh g(-1) at 50 mA g(-1) after 100 cycles), excellent rate-performance (328 mAh g(-1) at 5 A g(-1)), and good cycling stability up to 1000 cycles even at a current density of 10 A g(-1) were observed with the scIPA-reduced GO(2) electrode. The characterization results suggested that a large amount of hydrogen-terminated groups, numerous defect sites, and large interlayer spacing have beneficial effects on the electrochemical performance of scIPA-reduced GO(2).close2

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20–300 GeV positrons

    No full text
    The Compact Muon Solenoid collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1.1 cm2^{2} are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation
    corecore