74 research outputs found

    Comparing the Performance of Two Road Weather Models in the Netherlands

    Get PDF
    High-quality road condition forecasts are a prerequisite for road authorities to ensure wintertime road safety. Harsh winter conditions can cause problems for traffic not only in countries where snowy winters are common but also in regions where the temperature drops below the freezing point occasionally. This study reports on the evaluation of the Royal Netherlands Meteorological Institute's (KNMI) new road weather forecasting model by comparing it with the Finnish Meteorological Institute's (FMI) road weather model, both run for 321 Dutch road weather stations, four times daily (0300, 0900, 1500, and 2100 UTC) during the test period, 15 January-28 February 2015. Road surface temperature forecasts by both models were evaluated against observations. The KNMI model produced slightly more accurate forecasts than the FMI model. The main reason for the difference is probably due to the optimization of the physical properties of the KNMI model for the Netherlands, whereas the FMI model is designed for quite different Finnish wintertime meteorological conditions. However, in general the road surface temperature forecasts were of quite comparable quality.Peer reviewe

    The Year of Polar Prediction

    Get PDF
    The Year of Polar Prediction (YOPP) has the mission to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user- engagement and education activities. The YOPP Core Phase will be from mid-2017 to mid-2019, flanked by a Preparation Phase and a Consolidation Phase. YOPP is a key component of the World Meteorological Organization – World Weather Research Programme (WMO-WWRP) Polar Prediction Project (PPP). The objectives of YOPP are to: 1. Improve the existing polar observing system (better coverage, higher-quality observations); 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes; 3. Develop improved representation of key polar processes in coupled (and uncoupled) models used for prediction; 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data; 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from days to seasons; 6. Improve understanding of linkages between polar regions and lower latitudes and assess skill of models representing these linkages; 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user-relevant parameters; 8. Demonstrate the benefits of using predictive information for a spectrum of user types and services; 9. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. The PPP Steering Group provides endorsement for projects that contribute to YOPP to enhance coordination, visibility, communication, and networking. This White Paper is based largely on the much more comprehensive YOPP Implementation Plan (WWRP/PPP No. 3 – 2014), but has an emphasis on Arctic observations

    WWRP Polar Prediction Project Implementation Plan for the Year of Polar Prediction (YOPP)

    Get PDF
    The Year of Polar Prediction (YOPP) is planned for mid-2017 to mid-2019, centred on 2018. Its goal is to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user-engagement and education activities. With a focus on time scales from hours to a season, YOPP is a major initiative of the World Meteorological Organization’s World Weather Research Programme (WWRP) and a key component of the Polar Prediction Project (PPP). YOPP is being planned and coordinated by the PPP Steering Group together with representatives from partners and other initiatives, including the World Climate Research Programme’s Polar Climate Predictability Initiative (PCPI). The objectives of YOPP are to: 1. Improve the existing polar observing system (enhanced coverage, higher-quality observations). 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes. 3. Develop improved representation of key polar processes in (un)coupled models used for prediction. 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data. 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from hours to a season. 6. Improve understanding of linkages between polar regions and lower latitudes, assess skill of models representing these linkages, and determine the impact of improved polar prediction on forecast skill in lower latitudes. 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user- relevant parameters. 8. Identify various stakeholders and establish their decisionmaking needs with respect to weather, climate, ice, and related environmental services. 9. Assess the costs and benefits of using predictive information for a spectrum of users and services. 10. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. YOPP is implemented in three distinct phases. During the YOPP Preparation Phase (2013 through to mid-2017) this Implementation Plan was developed, which includes key outcomes of consultations with partners at the YOPP Summit in July 2015. Plans will be further developed and refined through focused international workshops. There will be engagement with stakeholders and arrangement of funding, coordination of observations and modelling activities, and preparatory research. During the YOPP Core Phase (mid-2017 to mid-2019), four elements will be staged: intensive observing periods for both hemispheres, a complementary intensive modelling and prediction period, a period of enhanced monitoring of forecast use in decisionmaking including verification, and a special educational effort. Finally, during the YOPP Consolidation Phase (mid-2019 to 2022) the legacy of data, science and publications will be organized. The WWRP-PPP Steering Group provides endorsement throughout the YOPP phases for projects that contribute to YOPP. This process facilitates coordination and enhances visibility, communication, and networking

    Sonny Terry (1980)

    No full text
    https://egrove.olemiss.edu/bluesphoto_nur/1046/thumbnail.jp
    • …
    corecore