64 research outputs found
Macroscopic anatomy of the fetal nasal cavity
Objectives to describe the macromicroscopic anatomy of the nasal cavity in the intermediate fetal period of human ontogenesis.
Material and methods. The object of the study was horizontal histotopograms of the nose of 15 fetuses of both genders at the age of 1922 weeks of the intermediate fetal period of ontogenesis. The study used the method of macromicroscopic preparation, the modified method of saw cuts according to N.I. Pirogov, and the histotopographic method.
Results. On the horizontal histotopographic sections the external nose was shaped like a triangle. The structures of the external nose were covered with skin soldered to the underlying tissues. In soft tissues, there was a large accumulation of arterial and venous vessels, nerves, and glands. In the intermediate fetal period, the nasal passages had the shape of a triangle, with the base turned to the nasal part of the pharynx.
It was found that the anterior-posterior size of the nasal septum in fetuses of the intermediate fetal period was 14.054.34 mm, with a range of fluctuations from 5.75 to 19.85 mm. The anterior-posterior size of the nasal septum in female fetuses was greater than the anterior-posterior size of the septum of male fetuses. The value of the width of the nasal septum was the maximum in the lower third, and reached up to 2.540.67 mm. The narrowest part of the nasal septum was its middle third, the value was 1.630.47 mm. The areas of the nasal passages had no bilateral differences.
Conclusion. In the intermediate fetal period there is the establishment of qualitative and quantitative macromicroscopic anatomy of the nasal cavity. All the main structures are determined: the nasal septum, nasal conchs, mucosa, and blood vessels. Sexual differences begin to form, and there are no bilateral differences. Quantitative characteristics of the structures of the nasal cavity in fetuses can serve as a justification for early surgical intervention in choanal atresia
Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase
Cellular quiescence is a state of reversible proliferation arrest that is induced by anti-mitogenic signals. The endogenous cardiac glycoside ouabain is a specific ligand of the ubiquitous sodium pump, Na,K-ATPase, also known to regulate cell growth through unknown signalling pathways.
To investigate the role of ouabain/Na,K-ATPase in uncontrolled neuroblastoma growth we used xenografts, flow cytometry, immunostaining, comet assay, real-time PCR, and electrophysiology after various treatment strategies.
The ouabain/Na,K-ATPase complex induced quiescence in malignant neuroblastoma. Tumour growth was reduced by >50% when neuroblastoma cells were xenografted into immune-deficient mice that were fed with ouabain. Ouabain-induced S-G2 phase arrest, activated the DNA-damage response (DDR) pathway marker γH2AX, increased the cell cycle regulator p21Waf1/Cip1 and upregulated the quiescence-specific transcription factor hairy and enhancer of split1 (HES1), causing neuroblastoma cells to ultimately enter G0. Cells re-entered the cell cycle and resumed proliferation, without showing DNA damage, when ouabain was removed.
Conclusion:
These findings demonstrate a novel action of ouabain/Na,K-ATPase as a regulator of quiescence in neuroblastoma, suggesting that ouabain can be used in chemotherapies to suppress tumour growth and/or arrest cells to increase the therapeutic index in combination therapies
Rapid and bi-directional regulation of AMPA receptor phosphorylation and trafficking by JNK
Jun N-terminal kinases (JNKs) are implicated in various neuropathological conditions. However, physiological roles for JNKs in neurons remain largely unknown, despite the high expression level of JNKs in brain. Here, using bioinformatic and biochemical approaches, we identify the AMPA receptor GluR2L and GluR4 subunits as novel physiological JNK substrates in vitro, in heterologous cells and in neurons. Consistent with this finding, GluR2L and GluR4 associate with specific JNK signaling components in the brain. Moreover, the modulation of the novel JNK sites in GluR2L and GluR4 is dynamic and bi-directional, such that phosphorylation and de-phosphorylation are triggered within minutes following decreases and increases in neuronal activity, respectively. Using live-imaging techniques to address the functional consequence of these activity-dependent changes we demonstrate that the novel JNK site in GluR2L controls reinsertion of internalized GluR2L back to the cell surface following NMDA treatment, without affecting basal GluR2L trafficking. Taken together, our results demonstrate that JNK directly regulates AMPA-R trafficking following changes in neuronal activity in a rapid and bi-directional manner
High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity
Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity
Synapse Geometry and Receptor Dynamics Modulate Synaptic Strength
Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD) and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity
The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity
Characterization of glucocorticoid-induced loss of DNA methylation of the stress-response gene Fkbp5 in neuronal cells
Exposure to stress or glucocorticoids (GCs) is associated with epigenetic and transcriptional changes in genes that either mediate or are targets of GC signalling. FKBP5 (FK506 binding protein 5) is one such gene that also plays a central role in negative feedback regulation of GC signalling and several stress-related psychiatric disorders. In this study, we sought to examine how the mouse Fkbp5 gene is regulated in a neuronal context and identify requisite factors that can mediate the epigenetic sequelae of excess GC exposure. Mice treated with GCs were used to establish the widespread changes in DNA methylation (DNAm) and expression of Fkbp5 across four brain regions. Then two cell lines were used to test the persistence, decay, and functional significance of GC-induced methylation changes near two GC response elements (GREs) in the fifth intron of Fkbp5. We also tested the involvement of DNMT1, cell proliferation, and MeCP2 in mediating the effect of GCs on DNAm and gene activation. DNAm changes at some CpGs persist while others decay, and reduced methylation states are associated with a more robust transcriptional response. Importantly, the ability to undergo GC-induced DNAm loss is tied to DNMT1 function during cell division. Further, GC-induced DNAm loss is associated with reduced binding of MeCP2 at intron 5 and a physical interaction between the fifth intron and promoter of Fkbp5. Our results highlight several key factors at the Fkbp5 locus that may have important implications for GC- or stress-exposure during early stages of neurodevelopment
- …