29 research outputs found

    Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions

    Get PDF
    The utility of a thermal image sharpening algorithm (TsHARP) in providing fine resolution land surface temperature data to a Two-Source-Model for mapping evapotranspiration (ET) was examined over two agricultural regions in the U.S. One site is in a rainfed corn and soybean production region in central Iowa. The other lies within the Texas High Plains, an irrigated agricultural area. It is concluded that in the absence of fine (sub-field scale) resolution thermal data, TsHARP provides an important tool for monitoring ET over rainfed agricultural areas. In contrast, over irrigated regions, TsHARP applied to kilometer-resolution thermal imagery is unable to provide accurate fine resolution land surface temperature due to significant sub-pixel moisture variations that are not captured in the sharpening procedure. Consequently, reliable estimation of ET and crop stress requires thermal imagery acquired at high spatial resolution, resolving the dominant length-scales of moisture variability present within the landscape

    Utility of thermal sharpening over Texas high plains irrigated agricultural fields

    Get PDF
    Irrigated crop production in the Texas high plains (THP) is dependent on water extracted from the Ogallala Aquifer, an area suffering from sever water shortage. Water management in this area is therefore highly important. Thermal satellite imagery at high temporal (~daily) and high spatial (~100 m) resolutions could provide important surface boundary conditions for vegetation stress and water use monitoring, mainly through energy balance models such as DisALEXI. At present, however, no satellite platform collects such high spatiotemporal resolution data. The objective of this study is to examine the utility of an image sharpening technique (TsHARP) for retrieving land surface temperature at high spatial resolution (down to 60 m) from moderate spatial resolution (1 km) imagery, which is typically available at higher (~daily) temporal frequency. A simulated sharpening experiment was applied to Landsat 7 imagery collected over the THP in September 2002 to examine its utility over both agricultural and natural vegetation cover. The Landsat thermal image was aggregated to 960 m resolution and then sharpened to its native resolution of 60 m and to various intermediate resolutions. The algorithm did not provide any measurable improvement in estimating high-resolution temperature distributions over natural land cover. In contrast, TsHARP was shown to retrieve high-resolution temperature information with good accuracy over much of the agricultural area within the scene. However, in recently irrigated fields, TsHARP could not reproduce the temperature patterns. Therefore we conclude that TsHARP is not an adequate substitute for 100-m-scale observations afforded by the current Landsat platforms. Should the thermal imager be removed from follow-on Landsat platforms, we will lose valuable capacity to monitor water use at the field scale, particularly in many agricultural regions where the typical field size is ~100 X 100 m. In this scenario, sharpened thermal imagery from instruments like MODIS or VIIRS would be the suboptimal alternative

    Utility of thermal sharpening over Texas high plains irrigated agricultural fields

    Get PDF
    Irrigated crop production in the Texas high plains (THP) is dependent on water extracted from the Ogallala Aquifer, an area suffering from sever water shortage. Water management in this area is therefore highly important. Thermal satellite imagery at high temporal (~daily) and high spatial (~100 m) resolutions could provide important surface boundary conditions for vegetation stress and water use monitoring, mainly through energy balance models such as DisALEXI. At present, however, no satellite platform collects such high spatiotemporal resolution data. The objective of this study is to examine the utility of an image sharpening technique (TsHARP) for retrieving land surface temperature at high spatial resolution (down to 60 m) from moderate spatial resolution (1 km) imagery, which is typically available at higher (~daily) temporal frequency. A simulated sharpening experiment was applied to Landsat 7 imagery collected over the THP in September 2002 to examine its utility over both agricultural and natural vegetation cover. The Landsat thermal image was aggregated to 960 m resolution and then sharpened to its native resolution of 60 m and to various intermediate resolutions. The algorithm did not provide any measurable improvement in estimating high-resolution temperature distributions over natural land cover. In contrast, TsHARP was shown to retrieve high-resolution temperature information with good accuracy over much of the agricultural area within the scene. However, in recently irrigated fields, TsHARP could not reproduce the temperature patterns. Therefore we conclude that TsHARP is not an adequate substitute for 100-m-scale observations afforded by the current Landsat platforms. Should the thermal imager be removed from follow-on Landsat platforms, we will lose valuable capacity to monitor water use at the field scale, particularly in many agricultural regions where the typical field size is ~100 X 100 m. In this scenario, sharpened thermal imagery from instruments like MODIS or VIIRS would be the suboptimal alternative

    Microbial Nitric Oxide, Nitrous Oxide, and Nitrous Acid Emissions from Drylands

    Get PDF
    Reactive nitrogen compounds (Nr, which include NOx (i.e., NO+NO2), N2O, ammonia, and HONO) have a large impact on atmospheric chemical composition and, thus, on climate. Nitric oxide (NO) is a chemically reactive trace gas that reacts with ozone (O3) to form NO2 (Crutzen 1979). The formation of O3 depends on a sensitive relationship between NOx (NO+NO2) and volatile organic compounds (VOC) (Sillman et al. 1990). Thus, even trace levels of NOx can activate O3 production. O3 itself can enrich the troposphere and as a short-lived climate pollutant (SLCP) can affect the climate (Shoemaker et al. 2013). Nitrous oxide (N2O) is among the most important greenhouse gases, together with H2O, CO2, and CH4. N2O has a relatively long lifetime, is enriched in the troposphere, and impacts the earth’s radiative balance (Ciais et al. 2013). When N2O enters the stratosphere, it reacts with O3 to NO, thereby depleting the ozone layer (Crutzen 1979)

    Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates

    Get PDF
    Diffusive heat flux at the soil surface is commonly determined as a mean value over a time period using heat flux plates buried at some depth (e.g., 5–8 cm) below the surface with a correction to surface flux based on the change in heat storage during the corresponding time period in the soil layer above the plates. The change in heat storage is based on the soil temperature change in the layer over the time period and an estimate of the soil thermal heat capacity that is based on soil water content, bulk density and organic matter content. One- or multiple-layer corrections using some measure of mean soil temperature over the layer depth are common; and in some cases the soil water content has been determined, although rarely. Several problems with the heat flux plate method limit the accuracy of soil heat flux values. An alternative method is presented and this flux gradient method is compared with soil heat flux plate measurements. The method is based on periodic (e.g., half-hourly) water content and temperature sensing at multiple depths within the soil profile and a solution of the Fourier heat flux equation. A Fourier sine series is fit to the temperature at each depth and the temperature at the next depth below is simulated with a sine series solution of the differential heat flux equation using successive approximation of the best fit based on changing the thermal diffusivity value. The best fit thermal diffusivity value is converted to a thermal conductivity value using the soil heat capacity, which is based on the measured water content and bulk density. A statistical analysis of the many data resulting from repeated application of this method is applied to describe the thermal conductivity as a function of water content and bulk density. The soil heat flux between each pair of temperature measurement depths is computed using the thermal conductivity function and measured water contents. The thermal gradient method of heat flux calculation compared well to values determined using heat flux plates and calorimetric correction to the soil surface; and it provided better representation of the surface spatiotemporal variation of heat flux and more accurate heat flux values. The overall method resulted in additional important knowledge including the water content dynamics in the near-surface soil profile and a soil-specific function relating thermal conductivity to soil water content and bulk density

    Diurnal emissivity dynamics in bare versus biocrusted sand dunes

    Get PDF
    Land surface emissivity (LSE) in the thermal infrared depends mainly on the ground cover and on changes in soil moisture. The LSE is a critical variable that affects the prediction accuracy of geophysical models requiring land surface temperature as an input, highlighting the need for an accurate derivation of LSE. The primary aim of this study was to test the hypothesis that diurnal changes in emissivity, as detected from space, are larger for areas mostly covered by biocrusts (composed mainly of cyanobacteria) than for bare sand areas. The LSE dynamics were monitored from geostationary orbit by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) over a sand dune field in a coastal desert region extending across both sides of the Israel–Egypt political borderline. Different land-use practices by the two countries have resulted in exposed, active sand dunes on the Egyptian side (Sinai), and dunes stabilized by biocrusts on the Israeli side (Negev). Since biocrusts adsorb more moisture from the atmosphere than bare sand does, and LSE is affected by the soil moisture, diurnal fluctuations in LSE were larger for the crusted dunes in the 8.7 μm channel. This phenomenon is attributed to water vapor adsorption by the sand/biocrust particles. The results indicate that LSE is sensitive to minor changes in soil water content caused by water vapor adsorption and can, therefore, serve as a tool for quantifying this effect, which has a large spatial impact. As biocrusts cover vast regions in deserts worldwide, this discovery has repercussions for LSE estimations in deserts around the globe, and these LSE variations can potentially have considerable effects on geophysical models from local to regional scales

    Application of the Priestley–Taylor Approach in a Two-Source Surface Energy Balance Model

    Get PDF
    The Priestley–Taylor (PT) approximation for computing evapotranspiration was initially developed for conditions of a horizontally uniform saturated surface sufficiently extended to obviate any significant advection of energy. Nevertheless, the PT approach has been effectively implemented within the framework of a thermal-based two-source model (TSM) of the surface energy balance, yielding reasonable latent heat flux estimates over a range in vegetative cover and climate conditions. In the TSM, however, the PT approach is applied only to the canopy component of the latent heat flux, which may behave more conservatively than the bulk (soil + canopy) system. The objective of this research is to investigate the response of the canopy and bulk PT parameters to varying leaf area index (LAI) and vapor pressure deficit (VPD) in both natural and agricultural vegetated systems, to better understand the utility and limitations of this approximation within the context of the TSM. Micrometeorological flux measurements collected at multiple sites under a wide range of atmospheric conditions were used to implement an optimization scheme, assessing the value of the PT parameter for best performance of the TSM. Overall, the findings suggest that within the context of the TSM, the optimal canopy PT coefficient for agricultural crops appears to have a fairly conservative value of ~1.2 except when under very high vapor pressure deficit (VPD) conditions, when its value increases. For natural vegetation (primarily grasslands), the optimal canopy PT coefficient assumed lower values on average (~0.9) and dropped even further at high values of VPD. This analysis provides some insight as to why the PT approach, initially developed for regional estimates of potential evapotranspiration, can be used successfully in the TSM scheme to yield reliable heat flux estimates over a variety of land cover types

    TWO-SOURCE ENERGY BALANCE MODEL TO CALCULATE E, T, AND ET: COMPARISON OF PRIESTLEY-TAYLOR AND PENMAN-MONTEITH FORMULATIONS AND TWO TIME SCALING METHODS

    Get PDF
    The two-source energy balance (TSEB) model calculates the energy balance of the soil-canopy-atmosphere continuum, where transpiration is initially determined by the Priestley-Taylor equation. The TSEB was revised recently using the Penman-Monteith equation to replace the Priestley-Taylor formulation, thus better accounting for the impact of large and varying vapor pressure deficits (VPD) typical of advective, semiarid climates. This study is a comparison of the Priestley- Taylor and Penman-Monteith versions of the TSEB (termed TSEB-PT and TSEB-PM, respectively). Evaporation (E), transpiration (T), and evapotranspiration (ET) calculated by the TSEB-PT and TSEB-PM versions were compared to measurements obtained with microlysimeters, sap flow gauges, and weighing lysimeters, respectively, for fully irrigated cotton (Gossypium hirsutum L.) at Bushland, Texas. Radiometric surface temperature (TR) was used to calculate E, T, and ET in both TSEB versions in 15 min intervals and summed to intervals coinciding with times of measurements. In addition, a one-time-of-day TR measurement was used (9:45, 11:15, 12:45, 14:15, or 15:45 CST), and E, T, and ET were calculated for the appropriate measurement interval (i.e., daytime, nighttime, and 24 h) using the time scaling methods based on reference ET (TSCET) and reference temperature (TSCTEMP). Measured average values of E, T, and ET during the study period were 0.94 mm (24 h), 6.9 mm (7:00 to 22:00 CST), and 7.2 mm (24 h), respectively. The TSEB-PT consistently overestimated E and underestimated T, with RMSE/MBE of up to 2.8/1.8 mm and 4.1/-3.9 mm, respectively. In comparison, the TSEB-PM greatly reduced discrepancies between calculations and measurements, with respective RMSE/MBE for E and T of only up to 1.5/0.79 mm and 1.3/±0.76 mm, respectively. For 24 h ET, the TSEB-PT resulted in maximum RMSE/MBE of 3.2/-1.9 mm, and the TSEB-PM had maximum RMSE/MBE of 1.7/0.95 mm. Daytime ET model agreement was very similar for both model versions (RMSE/MBE usually \u3c1.1/ET or TSCTEMP methods, and results did not greatly differ for TSCET or TSCTEMP. Both time scaling methods were not very sensitive to the TR measurement time used, although morning (9:45 CST) TR measurement times did not perform as well as the other times

    Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area

    Get PDF
    Agricultural productivity has increased in the Texas High Plains at the cost of declining water tables, putting at risk the sustainability of the Ogallala Aquifer as a principal source of water for irrigated agriculture. This has led area producers to seek alternative practices that can increase water use efficiency (WUE) through more careful management of water. One potential way of improving WUE is by reducing soil evaporation (E), thus reducing overall evapotranspiration (ET). Before searching for ways to reduce E, it is first important to quantify E and understand the factors that determine its magnitude. The objectives of this study were (1) to quantify E throughout part of the growing season for irrigated cotton in a strongly advective semi-arid region; (2) to study the effects of LAI, days after irrigation, and measurement location within the row on the E/ET fraction; and (3) to study the ability of microlysimeter (ML) measures of E combined with sap flow gage measures of transpiration (T) to accurately estimate ET when compared with weighing lysimeter ET data and to assess the E/T ratio. The research was conducted in an irrigated cotton field at the Conservation & Production Research Laboratory of the USDA-ARS, Bushland, TX. ET was measured by a large weighing lysimeter, and E was measured by 10 microlysimeters that were deployed in two sets of 5 across the interrow. In addition, 10 heat balance sap flow gages were used to determine T. A moderately good agreement was found between the sum E + T and ET (SE = 1 mm or ~10% of ET). It was found that E may account for \u3e50% of ET during early stages of the growing season (LAI \u3c 0.2), significantly decreasing with increase in LAI to values near 20% at peak LAI of three. Measurement location within the north-south interrows had a distinct effect on the diurnal pattern of E, with a shift in time of peak E from west to east, a pattern that was governed by the solar radiation reaching the soil surface. However, total daily E was unaffected by position in the interrow. Under wet soil conditions, wind speed and direction affected soil evaporation. Row orientation interacted with wind direction in this study such that aerodynamic resistance to E usually increased when wind direction was perpendicular to row direction; but this interaction needs further study because it appeared to be lessened under higher wind speeds

    Fruit load governs transpiration of olive trees

    Get PDF
    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs.</p
    corecore