8 research outputs found

    Interactions between 2,4-bis-pteridine-1,5-benzodiazepine and group 12 dihalides: synthesis, spectral and XRD structural studies and theoretical calculations

    Get PDF
    2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(II), cadmium(II) and mercury(II) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X2]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis. The structure of seven complexes has been obtained by single crystal X-ray diffraction. In all the cases, the metal is (2 + 2 + 1)-five-coordinated by two halide ligands, two nitrogen atoms from pyrazine and diazepine rings and a carbonyl oxygen from a pteridine ring. The coordinated-metal environment is a square-based pyramid, with increasing trigonality from Hg(II) to Zn(II) complexes. To coordinate the metals, the ligand folds itself, establishing four intramolecular σ–π interactions with the pyrimidine and pyrazine rings. A topological analysis of the electron density using the Quantum Theory of Atoms in Molecules and the complexes stability has been performed.Supported by the University of Jaén (Plan de Apoyo a la Investigación, al Desarrollo Tecnológico y a la Innovación), Junta de Andalucía (PAIDI groups FQM195, FQM273 and FQM337) and the State Secretariat for Research, Development and Innovation of Spanish Ministry of Economy and Competitivity (Project “Red de Excelencia MetalBio”, CTQ2015-71211-REDT)

    1,3,7-Trimethyl-2,4-dioxo-1,2,3,4-tetra­hydro­pteridine-6-carboxylic acid hemihydrate

    Get PDF
    In the title compound, C10H10N4O4·0.5H2O, the two rings of the pteridine system are nearly coplanar [dihedral angle = 4.25 (9)°]. The atoms of the carboxyl group are also coplanar with the pteridine unit [r.m.s. deviation from the mean plane of the pteridine skeleton = 0.092 (2) Å]. In the crystal, the presence of the water molecule of crystallization (O atom site symmetry 2) leads to a hydrogen-bonding pattern different from the one shown by many carboxylic acid compounds (dimers formed through O—H⋯O hydrogen bonds between neighbouring carboxyl groups): in the present structure, the water mol­ecule, which lies on a binary axis, acts as a bridge between two mol­ecules, forming a hydrogen-bonded dimer. In addition to the hydrogen bonds, there are π–π ring stacking inter­actions involving the pyrimidine and pyrazine rings [centroid–centroid distance = 3.689 (1)Å], and two different pyrazine rings [centroid–centroid distance = 3.470 (1)Å]. Finally, there is a C—O⋯π contact involving a carboxyl­ate C—O and the pyrimidine ring with a short O⋯Cg distance of 2.738 (2) Å

    (6-Acetyl-1,3,7-trimethyllumazine-κ3O4,N5,O6)bis(triphenylphosphine-κP)copper(I) hexafluoridophosphate

    Get PDF
    The title compound, [Cu(C11H12N4O3)(C18H15P)2]PF6, is the third example reported in the literature of a five-coordinated CuIP2NO2 system. The metal is coordinated to both PPh3 molecules through the P atoms and to the pyrazine ring of the lumazine molecule through an N atom in a trigonal–planar arrangement; two additional coordinated O atoms, at Cu—O distances longer than 2.46 Å, complete the coordination. The coordination environment can be described as an intermediate square-pyramidal/trigonal–bipyramidal (SP/TBP) polyhedron
    corecore