40 research outputs found

    A Weakly Pareto Compliant Quality Indicator

    Get PDF
    In multi-objective optimization problems, the optimization target is to obtain a set of non-dominated solutions. Comparing solution sets is crucial in evaluating the performances of different optimization algorithms. The use of performance indicators is common in comparing those sets and, subsequently, optimization algorithms. A good solution set must be close to the Pareto-optimal front, well-distributed, maximally extended and fully filled. Therefore, an effective performance indicator must encompass these features as a whole and must be Pareto dominance compliant. Unfortunately, some of the known indicators often fail to properly reflect the quality of a solution set or cost a lot to compute. This paper demonstrates that the Degree of Approximation (DOA) quality indicator, is a weakly Pareto compliant unary indicator that gives a good estimation of the match between the approximated front and the Pareto-optimal front. Moreover, DOA computation is easy and fast

    The Impact of the COVID-19 Pandemic on the Practice of Forensic Medicine: An Overview

    Get PDF
    During the COVID-19 pandemic, forensic sciences, on the one hand, contributed to gaining knowledge about different aspects of the pandemic, while on the other hand, forensic professionals were called on to quickly adapt their activities to respond adequately to the changes imposed by the pandemic. This review aims to clarify the state of the art in forensic medicine at the time of COVID-19, discussing the following: the influence of external factors on forensic activities, the impact of autopsy practice on COVID-19 and vice-versa, the persistence of SARS-CoV-2 RNA in post-mortem samples, forensic personnel activities during the SARS-CoV-2 pandemic, the global vaccination program and forensic sciences, forensic undergraduate education during and after the imposed COVID-19 lockdown, and the medico-legal implications in medical malpractice claims during the COVID-19 pandemic. The COVID-19 pandemic has greatly influenced different aspects of human life, and, accordingly, the practical activities of forensic sciences that are defined as multidisciplinary, involving different expertise. Indeed, the activities are very different, including crime scene investigation (CSI), external examination, autopsy, and genetic and toxicological examinations of tissues and/or biological fluids. At the same time, forensic professionals may have direct contact with subjects in life, such as in the case of abuse victims (in some cases involving children), collecting biological samples from suspects, or visiting subjects in the case of physical examinations. In this scenario, forensic professionals are called on to implement methods to prevent the SARS-CoV-2 infection risk, wearing adequate PPE, and working in environments with a reduced risk of infection. Consequently, in the pandemic era, the costs involved for forensic sciences were substantially increased

    A rare case of suicide by ingestion of phorate: A case report and a review of the literature

    Get PDF
    Phorate is a systemic organophosphorus pesticide (OP) that acts by inhibiting cholinesterases. Recent studies have reported that long-term low/moderate exposure to OP could be correlated with impaired cardiovascular and pulmonary function and other neurological effects. A 70-year-old farmer died after an intention ingestion of a granular powder mixed with water. He was employed on a farm for over 50 years producing fruit and vegetables, and for about 20 years, he had also applied pesticides. In the last 15 years, he used phorate predominantly. The Phorate concentration detected in gastric contents was 3.29 µg/mL. Chronic exposure to phorate is experimentally studied by histopathological changes observed in the kidney. In the light of current literature, our case confirms that there is an association between renal damage and chronic exposure to phorate in a subject exposed for years to the pesticide. Autopsies and toxicological analyses play a key role in the reconstruction of the dynamics, including the cause of the death

    Smart drugs and neuroenhancement: what do we know?

    Get PDF
    Introduction: Smart drugs are among the most common drugs used by students. It is estimated that they are second in incidence after cannabis. Although they are usually used for diseases such as attention deficit hyperactivity disorder (ADHD) and dementia, in most cases the use of smart drugs is illegal and without a prescription. Methodological issues: A systematic review was conducted according to PRISMA guidelines. SCOPUS, Medline (using PubMed as a search engine), Embase, Web of Sciences, and Google Scholar were used as search engines from January 1, 1980 to June 1, 2021 to evaluate the association between smart drugs and neuro-enhancement. A total of 4715 articles were collected. Of these, 295 duplicates were removed. A total of 4380 articles did not meet the inclusion criteria. In conclusion, 48 articles were included in the present systematic review. Results: Most of the studies were survey studies, 1 was a prospective longitudinal study, 1 was a cross-over study, and 1 was an experimental study in an animal model (rats). The largest group of consumers was school or university students. The most frequent reasons for using smart drugs were: better concentration, neuro enhancement, stress reduction, time optimization, increased wake time, increased free time, and curiosity. There are conflicting opinions, in fact, regarding their actual functioning and benefit, it is not known whether the benefits reported by consumers are due to the drugs, the placebo effect or a combination of these. The real prevalence is underestimated: it is important that the scientific community focus on this issue with further studies on animal models to validate their efficacy

    Review adverse effects of anabolic-androgenic steroids: A literature review

    Get PDF
    Anabolic-androgenic steroids (AASs) are a large group of molecules including endoge-nously produced androgens, such as testosterone, as well as synthetically manufactured derivatives. AAS use is widespread due to their ability to improve muscle growth for aesthetic purposes and athletes’ performance, minimizing androgenic effects. AAS use is very popular and 1–3% of US inhabitants have been estimated to be AAS users. However, AASs have side effects, involving all organs, tissues and body functions, especially long-term toxicity involving the cardiovascular system and the reproductive system, thereby, their abuse is considered a public health issue. The aim of the proposed review is to highlight the most recent evidence regarding the mechanisms of action of AASs and their unwanted effects on organs and lifestyle, as well as suggesting that AAS misuse and abuse lead to adverse effects in all body tissues and organs. Oxidative stress, apoptosis, and protein synthesis alteration are common mechanisms involved in AAS-related damage in the whole body. The cardiovascular system and the reproductive system are the most frequently involved apparatuses. Epidemiology as well as the molecular and pathological mechanisms involved in the neuropsychiatric side-effects of AAS abuse are still unclear, further research is needed in this field. In addition, diagnostically reliable tests for AAS abuse should be standardized. In this regard, to prevent the use of AASs, public health measures in all settings are crucial. These measures consist of improved knowledge among healthcare workers, proper doping screening tests, educational interventions, and updated legislation

    Tecniche iterative ad elementi finiti per il calcolo di campi elettromagnetici in domini illimitati

    No full text
    Dottorato di ricerca in ingegneria elettrotecnica. 8. ciclo. Tutore S. Coco. Coordinatore A. ConsoliConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Solar Cell Optimization by means of Metallic Nanodisks

    Get PDF
    In this paper the authors optimize the geometry of a solar cell with metallic nanodisks by employing a finite element code to solve the light scattering problem from the cell and genetic algorithm optimization

    Thin Conductor Modelling Combined with a Hybrid Numerical Method to Evaluate the Transferred Potential from Isolated Grounding System

    No full text
    Grounding systems are essential parts of substations and power generation stations. The evaluation of transferred potentials from an active grounding system to other passive ones or to any near conductors is an important aspect to be considered, because transferred potentials may cause serious and fatal events. Moreover, it is an intrinsic issue of the Smart Grid where the ground systems of the power and ICT systems could be close to each other. Therefore, the estimation of the transferred potential is necessary at grounding system design stage for people safety and electric components safeguard. Numerical methods are the best choice to perform a truthful estimation, especially when large and complex grounding systems have to be designed. However, this task is complicated by the “unbounded„ nature of the electromagnetic field and by the presence of components of extremely different size in the analysis domain. In this paper, an efficient hybrid finite element method is applied for the accurate and fast computation of transferred earth potentials from grounding systems. Moreover, the small dimensions of the components in the analysis domain are taken into account by the use of one-dimensional finite elements inserted in the tetrahedral mesh. It is worth mentioning the additional advantage of obtaining the electric potential on the earth surface without any post-processing operation

    The Hybrid FEM-DBCI for the Solution of Open-Boundary Low-Frequency Problems

    No full text
    This paper describes a particular use of the hybrid FEM-DBCI, for the computation of low-frequency electromagnetic fields in open-boundary domains. Once the unbounded free space enclosing the system has been truncated, the FEM is applied to the bounded domain thus obtained, assuming an unknown Dirichlet condition on the truncation boundary. An integral equation is used to express this boundary condition in which the integration surface is selected in the middle of the most external layer of finite elements, very close to the truncation boundary, so that the integral equation becomes quasi-singular. The method is described for the computation of electrostatic fields in 3D and of eddy currents in 2D, but it is also applicable to the solution of other kinds of electromagnetic problems. Comparisons are made with other methods, concluding that FEM-DBCI is competitive with the well-known FEM-BEM and coordinate transformations for what concerns accuracy and computing time

    Multi-Objective Optimization of Thin-Film Silicon Solar Cells with Metallic and Dielectric Nanoparticles

    No full text
    Thin-film solar cells enable a strong reduction of the amount of silicon needed to produce photovoltaic panels but their efficiency lowers. Placing metallic or dielectric nanoparticles over the silicon substrate increases the light trapping into the panel thanks to the plasmonic scattering from nanoparticles at the surface of the cell. The goal of this paper is to optimize the geometry of a thin-film solar cell with silver and silica nanoparticles in order to improve its efficiency, taking into account the amount of silver. An efficient evolutionary algorithm is applied to perform the optimization with a reduced computing time
    corecore