29 research outputs found

    Type 2 Diabetes Mellitus, Platelet Activation and Alzheimer's Disease: A Possible Connection

    Get PDF
    : Type 2 diabetes mellitus DM (T2DM) is associated with a 70% increased risk for dementia, including Alzheimer's disease (AD). Insulin resistance has been proposed to play a pivotal role in both T2DM and AD and the concept of "brain insulin resistance" has been suggested as an interpretation to the growing literature regarding cognitive impairment and T2DM. Subjects with T2DM present an abnormal platelet reactivity that together with insulin resistance, hyperglycaemia and dyslipidaemia effect the vascular wall by a series of events including endothelial dysfunction, oxidative stress and low-grade inflammation. Activated platelets directly contribute to cerebral amyloid angiopathy (CAA) by promoting the formation of β-amyloid (Aβ) aggregates and that Aβ, in turn, activates platelets, creating a feed-forward loop suggesting the involvement of platelets in the AD pathogenesis. Moreover, islet amyloid polypeptide deposition, co-localized with Aβ deposits, is a common finding in the brain of patients with T2DM. These observations raise the intriguing prospect that traditional or novel antiplatelet therapeutic strategies may alleviate fibril formation and could be used in the prevention or treatment of AD subjects with diabetes

    Electro-oxidation of phenol over electrodeposited MnOx nanostructures and the role of a TiO2 nanotubes interlayer

    Get PDF
    More and more attention has recently been paid to the electrochemical treatment of wastewater for the degradation of refractory organics, such as phenol and its derivatives. The electrodeposition of different types of manganese oxides (MnOx) over two substrates, namely metallic titanium and titania nanotubes (TiO2-NTs), is reported herein. X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) analyses have confirmed the formation of different oxidation states of the manganese, while Field Emission Scanning Electronic Microscopy (FESEM) analysis has helped to point out the evolutions in the morphology of the samples, which depends on the electrodeposition parameters and calcination conditions. Moreover, cross section FESEM images have demonstrated the penetration of manganese oxides inside the NTs for anodically deposited samples. The electrochemical properties of the electrodes have been investigated by means of cyclic voltammetry (CV) and linear sweep voltammetry (LSV), both of which have shown that both calcination and electrodeposition over TiO2-NTs lead to more stable electrodes that exhibited a marked increase in the current density. The activity of the proposed nanostructured samples toward phenol degradation has been investigated. The cathodically electrodeposited manganese oxides (α-MnO2) have been found to be the most active phase, with a phenol conversion of 26.8%. The anodically electrodeposited manganese oxides (α-Mn2O3), instead, have shown higher stability, with a final working potential of 2.9 V vs. RHE. The TiO2-NTs interlayer has contributed, in all cases, to a decrease of about 1–1.5 V in the final (reached) potential, after a reaction time of 5 h. Electrochemical impedance spectroscopy (EIS) and accelerated life time tests have confirmed the beneficial effect of TiO2-NTs, which contributes by improving both the charge transfer properties (kinetics of reaction) and the adhesion of MnOx films

    Efficacy of selective histone deacetylase 6 inhibition in mouse models of Pseudomonas aeruginosa infection: A new glimpse for reducing inflammation and infection in cystic fibrosis

    Get PDF
    The latest studies identified the histone deacetylase (HDAC) class of enzymes as strategic components of the complex molecular machinery underlying inflammation in cystic fibrosis (CF). Compelling new support has been provided for HDAC6 isoform as a key player in the generation of the dysregulated proinflammatory phenotype in CF, as well as in the immune response to the persistent bacterial infection accompanying CF patients. We herein provide in vivo proof-of-concept (PoC) of the efficacy of selective HDAC6 inhibition in contrasting the pro-inflammatory phenotype in a mouse model of chronic P. aeruginosa respiratory infection. Upon careful selection and in-house re-profiling (in vitro and cell-based assessment of acetylated tubulin level through Western blot analysis) of three potent and selective HDAC6 inhibitors as putative candidates for the PoC, we engaged the best performing compound 2 for pre-clinical studies. Compound 2 demonstrated no toxicity and robust anti-inflammatory profile in a mouse model of chronic P. aeruginosa respiratory infection upon repeated aerosol administration. A significant reduction of leukocyte recruitment in the airways, in particular neutrophils, was observed in compound 2-treated mice in comparison with the vehicle; moreover, quantitative immunoassays confirmed a significant reduction of chemokines and cytokines in lung homogenate. This effect was also associated with a modest reduced bacterial load after compound 2-treatment in mice compared to the vehicle. Our study is of particular significance since it demonstrates for the first time the utility of selective drug-like HDAC6 inhibitors in a relevant in vivo model of chronic P. aeruginosa infection, thus supporting their potential application for reverting CF phenotype

    Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Bisphosphonate - related osteonecrosis of the JAW (BRONJ) is a well known side effect of bisphosphonate therapies in oncologic and non oncologic patients. Since to date no definitive consensus has been reached on the treatment of BRONJ, novel strategies for the prevention, risk reduction and treatment need to be developed. We report a 75 year old woman with stage 3 BRONJ secondary to alendronate and pamidronate treatment of osteoporosis. The patient was unresponsive to recommended treatment of the disease, and her BRONJ was worsening. Since bone marrow stem cells are know as being multipotent and exhibit the potential for differentiation into different cells/tissue lineages, including cartilage, bone and other tissue, we performed autologous bone marrow stem cell transplantation into the BRONJ lesion of the patient.</p> <p>Methods</p> <p>Under local anesthesia a volume of 75 ml of bone marrow were harvested from the posterior superior iliac crest by aspiration into heparinized siringes. The cell suspension was concentrated, using Ficoll - Hypaque<sup>® </sup>centrifugation procedures, in a final volume of 6 ml. Before the injection of stem cells into the osteonecrosis, the patient underwent surgical toilet, local anesthesia was done and spongostan was applied as a carrier of stem cells suspension in the bone cavity, then 4 ml of stem cells suspension and 1 ml of patient's activated platelet-rich plasma were injected in the lesion of BRONJ.</p> <p>Results</p> <p>A week later the residual spongostan was removed and two weeks later resolution of symptoms was obtained. Then the lesion improved with progressive superficialization of the mucosal layer and CT scan, performed 15 months later, shows improvement also of bone via concentric ossification: so complete healing of BRONJ (stage 0) was obtained in our patient, and 30 months later the patient is well and without signs of BRONJ.</p> <p>Conclusion</p> <p>To our knowledge this is the first case of BRONJ successfully treated with autologous stem cells transplantation with a complete response.</p

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p &lt; 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p &lt; 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p &lt; 0.0001) or urgent (20.4% vs. 38.5%; p &lt; 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p &lt; 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    Investigation of Gas Diffusion Electrode Systems for the Electrochemical CO2 Conversion

    No full text
    Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors
    corecore