
TYPE 2 DIABETES MELLITUS, PLATELET ACTIVATION AND ALZHEIMER’S DISEASE:  
A POSSIBLE CONNECTION

Manuel Glauco Carbone, Nunzio Pomara, Camilla Callegari, Donatella Marazziti, Bruno Pietro Imbimbo

Clinical Neuropsychiatry (2022) 19, 6, 370-378

Citation: Carbone, M. G., Pomara, N., 
Callegari, C, Marazziti, D., Imbimbo, 
B. P. (2022). Type 2 Diabetes Mellitus, 
Platelet Activation and Alzheimer’s 
Disease: a Possible Connection Clinical 
Neuropsychiatry, 19(6), 370-378.

doi.org/10.36131/
cnfioritieditore20220604

© 2022 Giovanni Fioriti Editore s.r.l.
This is an open access article. Distribu-
tion and reproduction are permitted 
in any medium, provided the original 
author(s) and source are credited.

Funding: None. 

Competing interests: Bruno Pietro 
Imbimbo is employed at Chiesi 
Farmaceutici. See the complete 
competing interest declaration 
published on the web page of the 
article.

Corresponding author
Manuel Glauco Carbone
E-mail: manuelglaucocarbone@
gmail.com

OPEN ACCESS
Abstract

Type 2 diabetes mellitus DM (T2DM) is associated with a 70% increased risk 
for dementia, including Alzheimer’s disease (AD). Insulin resistance has been 
proposed to play a pivotal role in both T2DM and AD and the concept of “brain 
insulin resistance” has been suggested as an interpretation to the growing literature 
regarding cognitive impairment and T2DM. Subjects with T2DM present an 
abnormal platelet reactivity that together with insulin resistance, hyperglycaemia 
and dyslipidaemia effect the vascular wall by a series of events including 
endothelial dysfunction, oxidative stress and low-grade inflammation. Activated 
platelets directly contribute to cerebral amyloid angiopathy (CAA) by promoting 
the formation of β-amyloid (Aβ) aggregates and that Aβ, in turn, activates platelets, 
creating a feed-forward loop suggesting the involvement of platelets in the AD 
pathogenesis. Moreover, islet amyloid polypeptide deposition, co-localized with 
Aβ deposits, is a common finding in the brain of patients with T2DM. These 
observations raise the intriguing prospect that traditional or novel antiplatelet 
therapeutic strategies may alleviate fibril formation and could be used in the 
prevention or treatment of AD subjects with diabetes.
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1. Introduction
Diabetes mellitus (DM), defined by elevated 

glycemic markers, has reached an epidemic level 
worldwide and its prevalence continues to climb. 
Findings from the 10th edition of the International 
Diabetes Federation Atlas confirm that diabetes is one 
of the fastest growing global health emergencies of the 
21st century. In 2021, it is estimated that 537 million 
people have diabetes, and this number is projected to 
reach 643 million by 2030, and 783 million by 2045. 
In addition, 541 million people are estimated to have 
impaired glucose tolerance in 2021 (International 
Diabetes Federation, 2021). 

There are three main types of diabetes mellitus:

• Type 1 diabetes (T1DM) is characterized by an 
inability of the pancreas to produce sufficient 
amounts of insulin due to apoptosis mechanisms 
of the β-cells, assigned to secrete this hormone 
(Chwalba et al., 2021). Once known as “juvenile 
diabetes”, it affects about 3-5% of people with 
diabetes and generally occurs in childhood 
or adolescence but can also occur in adults 
(International Diabetes Federation, 2021). Factors 
triggering apoptosis processes are very diverse 
and currently not fully explained. Genetic and 
environmental factors would seem to induce a 
specific autoimmune response against β-cells, 
confirmed by the appearance of autoantibodies 
in the blood, that leads to an absolute insulin 
deficiency (Roep et al., 2016; Xie et al., 2014; 
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et al., 2014). The concept of ‘brain insulin resistance’ 
has been proposed as a potential interpretation to the 
growing literature regarding cognitive impairment and 
neuropathological abnormalities in T2DM, obesity, 
and insulin resistance (Arnold et al., 2018). A large 
study has shown that cognitively normal subjects with 
untreated diabetes present greater tau pathology than 
both treated diabetics and normoglycemic subjects, 
and that they progress to dementia at significant higher 
rates than controls (McIntosh et al., 2019; Reddy et al., 
2017). This suggests that abnormal glucose metabolism 
may drive AD pathogenesis (Chen et al., 2011; Kuehn, 
2020). 

Insulin resistance, hyperglycaemia and the 
release of excess free fatty acids, along with other 
metabolic abnormalities effects the vascular wall by 
a series of events including endothelial dysfunction, 
platelet hyperreactivity, oxidative stress and low-
grade inflammation (Freeman & Pennings, 2021; 
Grandl & Wolfrum, 2018). These events further 
enhance vasoconstriction and promote thrombus 
formation, ultimately resulting in the development of 
atherosclerosis (Faselis et al., 2020; Sapra & Bhandari, 
2021). Atherothrombosis, the result of the progression 
of atherosclerosis, and its major manifestations 
(cerebro- and cardiovascular strokes, myocardial 
infarction and peripheral arterial ischemia) account for 
the 80% of deaths in these patients (Gu et al., 1998; 
Kautzky-Willer et al., 2016; Martin-Timon et al., 2014). 

It is well known that platelet hyperactivity plays 
a pivotal role in the initiation and progression of 
atherosclerosis processes, generating a prothrombotic 
and proinflammatory state (Badimon et al., 2012; 
Borchers & Pieler, 2010; Bray, 2007; Gaiz et al., 2017; 
Lebas et al., 2019). 

Platelets obtained from T2DM are hyperactive and 
demonstrate exaggerated aggregation and adhesion as 
well as thrombus generation (Chen et al., 2017; Eibl et 
al., 2004; Ferreiro et al., 2010; Kakouros et al., 2011; 
Pretorius et al., 2018; Rodriguez & Johnson, 2020; 
Yngen et al., 2004; Zhu et al., 2012). There are many 
different consequences that have been attributed to the 
diabetes-associated enhanced platelet activation, such 
as a loss of the anti-platelet effect of insulin, insulin 
resistance, hyperglycaemia, oxidative stress, elevated 
vascular shear forces, increased binding of fibrinogen, 
altered expression of glycoprotein receptors, proteins 
attached to the platelet surface, obesity, dyslipidaemia 
and increased systemic inflammation (Baghersalimi et 
al., 2019; Hu et al., 2017; Kaur et al., 2018; Pretorius, 
2019; Randriamboavonjy, 2015; Schneider, 2009; 
Vaidyula et al., 2006).

1.2 Insulin resistance and platelet activation
Insulin, insulin-like growth factor-1 (IGF-1), and 

insulin-like growth factor-2 (IGF-2) exert their actions 
through structurally similar receptors, including insulin 
receptor isoforms (IRs) and IGF-1-receptor (IGF1R) 
(Belfiore et al., 2017; Ullrich et al., 1985). Platelets 
express this receptor pool and its  functions are directly 
regulated by insulin, thus raising the possibility that 
platelets may be sites of insulin resistance (Hunter & 
Hers, 2009). 

In the prediabetic stage this insulin resistance is 
initially associated with a compensatory increase in 
insulin production by pancreatic β-cells sufficient to 
maintain fasting euglycemia. In susceptible individuals, 
the pancreatic β-cells under the increased demand, 
undergo apoptosis leading to a reduction in β-cell 

Zheng et al., 2017).
• Type 2 DM (T2DM) is the most prevalent form of 

diabetes and accounts for approximately 90-95% 
of the total diabetes cases (International Diabetes 
Federation, 2021). T2DM is characterized by 
progressive insulin deficiency and impairment of 
β-cell function, superimposed on insulin resistance 
(Aviles-Santa et al., 2020; Eizirik et al., 2020; 
Saeedi et al., 2019).

• Gestational diabetes mellitus (GDM) is the third 
main form and has been defined as any degree 
of glucose intolerance with an onset, or first 
recognition during pregnancy (Alfadhli, 2015). 
In women with gestational diabetes, blood sugar 
usually returns to normal soon after delivery 
(Lende & Rijhsinghani, 2020). However, there is a 
higher risk of suffering from T2DM if you have had 
GDM (Mack & Tomich, 2017).

Considering T2DM, it is a multisystem disease 
associated with both micro-vascular and macro-vascular 
complications (Chawla et al., 2016). It is generally 
associated with an increased incidence (two to fourfold) 
of ischemic cardio- and cerebro-vascular events (Dal 
Canto et al., 2019). Insulin resistance, hyperglycemia, 
and release of excess free fatty acids, along with other 
metabolic abnormalities affects vascular wall by a 
series of events including endothelial dysfunction, 
platelet hyperactivity, oxidative stress and low-grade 
inflammation (Kaur et al., 2018). Interestingly, not 
only long-term, continuous hyperglycemia but also 
transient, acute hyperglycemic spikes may contribute 
to the enhanced risk of stroke, amputation, and death 
(Hanssen et al., 2020). Platelet hyper-responsivity has 
been identified as one of the mechanisms of enhanced 
arterial thrombosis in T2DM; specifically, an acute, 
short-term hyperglycemia enhances platelet activation 
and, in particular, high-shear stress-induced activation 
(Gresele et al., 2010). Excessive platelet activation may 
play a key role in the pathogenesis of first or subsequent 
transient ischemic attack or stroke (Kinsella et al., 2013), 
perivascular or inflammatory diseases (Berbudi et al., 
2020; Kannan et al., 2019) and also neurodegenerative 
disorders (Hassan et al., 2020; Randriamboavonjy et 
al., 2014; Rawish et al., 2020; Umegaki, 2012). 

Alzheimer's disease (AD), the most common 
neurodegenerative disease (Santiago & Potashkin, 
2021), is characterized by neurotoxic β-amyloid (Aß) 
plaque formation in brain parenchyma and cerebral 
blood vessels known as cerebral amyloid angiopathy 
(CAA) (Vickers et al., 2016). Besides CAA, AD is 
strongly related to vascular diseases such as stroke 
and atherosclerosis. As already said, platelets are not 
only the major players in haemostasis and thrombosis 
processes, but they were the peripheral primary source 
of Aß peptides (Chen et al., 1995). Considering these 
observations, it appears tempting to hypothesize that 
platelets could be the link between T2DM, vascular risk 
factors/atherosclerosis and AD.

1.1 Type 2 Diabetes Mellitus and Alzheimer’s 
dementia

T2DM is associated with a 70% increased risk 
for dementia (Gudala et al., 2013). A recent large 
longitudinal cohort study with a median follow-up 
of 32 years has shown that younger age at onset of 
diabetes was significantly associated with higher risk 
of subsequent dementia (Barbiellini Amidei et al., 
2021). Insulin resistance has been proposed to play a 
pivotal role in both type 2 diabetes and AD (Sebastiao 
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degradation of the glycolytic intermediates (Thornalley, 
1993). MG as well as the related advanced glycation 
end-products (AGEs) through the action on the AGE 
receptor (RAGE) expressed on platelet surface, 
increases the plasmatic level of several platelet 
activation markers such as CD 31, CD49b and CD63 
(Gawlowski et al., 2009). Moreover, it was found that 
glycated haemoglobin (HbA1C) levels and fasting 
glucose were significantly correlated with P-selectin 
and CD63 platelet expression (Eibl et al., 2004; 
Kakouros et al., 2011). Finally, when hyperglycaemia 
aldose reductase activity increases significantly, it 
leads to abnormal activation of the polyol pathway 
and enhanced oxidative and osmotic stress (Tang et al., 
2011). In turn aldose reductase increases thromboxane 
formation and platelet activation (Tang et al., 2011).

1.4 Oxidative stress and platelet activation
Superoxide is considered to be a major factor in 

oxidant toxicity, and it has been shown to increase 
platelet reactivity through different mechanisms 
(Freedman, 2008; Handin et al., 1977). It may increase 
platelet activity and facilitate platelet aggregation 
response by enhancing intraplatelet release of calcium 
after activation (Freedman, 2008). Superoxide increases 
the production of F2 isoprostanes, which in turn enhance 
platelet response to agonists. In addition, superoxide 
limits the biologic activity of NO (Freedman, 2008; 
Schaeffer et al., 1999) reducing the activity of eNOS. 
Oxidative stress impairs endothelial function and 
decreases the production of prostacyclin (Schaeffer et 
al., 1999). Additionally, superoxide increases signalling 
of many platelet receptors (Masselli et al., 2020). 

The association of T2DM with increased systemic 
inflammation is well known (Tsalamandris et al., 2019). 
In T2DM, increased levels of inflammatory markers 
were observed in comparison with healthy controls 
(Lim et al., 2004). Inflammatory processes increase the 
expression of Fcγ receptor type IIa (FcγRIIa), which 
induces increased platelet activation in response to 
collagen (Belostocki et al., 2008; Calverley et al., 2003) 
while attenuation of inflammation decreases expression 
of FcγRIIa (Belostocki et al., 2008). 

Moreover, crosstalk between platelets and 
leukocytes amplifies leukocyte activation both by 
platelet activation and by platelet reactivity (Stratmann 
& Tschoepe, 2005). The release of platelet-activating 
factor by leukocytes primes platelets for activation and 
increases the extent to which they activate in response 
to other agonists (Keating & Schneider, 2009).

Therefore, oxidative stress that is associated 
with diabetes promotes platelet hyperreactivity and 
inflammation that very often accompanies diabetes and 
contributes to increased platelet reactivity that, in turn, 
may further accentuate the inflammatory process.

Elevated shear forces caused by narrowing 
of the vascular lumen, typical of the micro and 
macroangiopathic processes of subjects with diabetes, 
were found to increase platelet aggregability (Rana et al., 
2019).  High shear forces result in higher downstream 
platelet adhesion onto three different platelet agonists: 
fibrinogen, collagen, or von Willebrand Factor (vWF). 

Generally, αIIbβ3-fibrinogen-dominated platelet 
aggregation occurs mainly under low shear rates 
while the bonds were stabilized by soluble agonists 
that maintain the activated state of integrins (Rana et 
al., 2019). At increasing shear range, platelet-platelet 
interactions become increasingly dependent on vWF 
and its binding with both αIIbβ3 and GPIbα receptors 

mass (Weir & Bonner-Weir, 2004). Consequently, the 
hyperinsulinemia characteristic of the early stages 
of DM2 progressively gives way to a related and 
eventually absolute insulin deficiency. 

Several studies showed that insulin inhibits platelet 
aggregation, impairs the interaction with collagen 
and also reduces its sensitivity to proaggregants 
(Ferreira et al., 2006; Hers, 2007; Hiramatsu et al., 
1987; Westerbacka et al., 2002). Firstly, insulin 
decreases thrombin-induced increase in Ca2+ and 
attenuates agonist-induced platelet aggregation 
(Randriamboavonjy, 2015). Insulin also mediates the 
anti-platelet effect by activation of the AMP-activated 
protein kinase (AMPK) and the phosphoinositide 
3-kinase/Akt (PI3K/Akt) pathway inducing inhibition 
of aggregation and promoting synthesis of nitric oxide, 
cyclic GMP, and cyclic AMP (Ceriello et al., 1995; 
Jones, 1985; Kahn et al., 2003; Rauch & Nemerson, 
2000; Trovati et al., 1994; Vaidyula et al., 2006). 

At the same time, insulin decreases the release of 
proaggregatory factors in healthy non-obese subjects, 
an effect that is blunted in obese individuals, which 
induces plasminogen activator secretion and increases 
expression of prostaglandin I2 (PGI2) (Westerbacka 
et al., 2002). Moreover, in non-diabetic obese women, 
there is a direct correlation between platelet reactivity 
assessed by thromboxane A2 generation and insulin 
resistance (Basili et al., 2006). Insulin binding to 
IR activates insulin receptor substrate 1 (IRS-1) via 
tyrosine phosphorylation and mediates its association 
with Giα-subunit. This leads to decreased activity of Gi 
that results into decreased platelet activity (Ferreira et 
al., 2004; Trovati et al., 1997). 

T2DM patients have a loss of responsiveness to 
insulin that leads to increased platelet reactivity and 
reduced response to antiplatelet agents (Marin et al., 
2009). 

All of these considerations imply that an impaired 
platelet response to insulin is often present in T2DM 
subjects and may lead to an abnormal platelet reactivity.

1.3 Hyperglycaemia and platelet activation
Hyperglycaemia contributes to greater platelet 

reactivity through direct effects and by promoting 
glycation of platelet proteins (Lee & Bergmeier, 2017). 

Hyperglycaemia, inducing nonenzymatic glycation 
of proteins on the platelet surface, decreases membrane 
fluidity and increases platelet reactivity (Watala et al., 
1998; Winocour et al., 1992). This hyper-reactivity may 
be further enhanced by the osmotic effect of glucose 
which promotes the expression of platelet GP IIb/IIIa, 
P-selectin and CD40 ligand as well as soluble markers 
(sP-selectin) (Ghoshal & Bhattacharyya, 2014; Keating 
et al., 2003; Undas et al., 2008; Vaidyula et al., 2006; 
Yngen et al., 2001).

Chronic and acute hyperglycaemia is able to increase 
the expression and/or activity of protein kinase C (PKC) 
(Assert et al., 2001), a central kinase in the regulation 
of platelet activity. In addition, hyperglycaemia 
induces a coagulated state by increasing the release of 
prothrombotic molecules like von Willebrand factor 
(vWF) and tissue factor, while inhibiting fibrinolysis 
by raising plasminogen activator inhibitor-1 (PAI-
1) concentration (Boden & Rao, 2007; Kessler et al., 
1998). 

Many of these deleterious glucose-induced effects 
have been attributed to its metabolite methylglyoxal 
(MG), a highly reactive dicarbonyl metabolite that 
is generated endogenously by the nonenzymatic 



Manuel Glauco Carbone et al. Type 2 Diabetes Mellitus, Platelet Activation and Alzheimer’s Disease: a Possible Connection

Clinical Neuropsychiatry (2022) 19, 6 373

regulated also by its apolipoprotein E (apoE) content. In 
fact, apoE-VLDL-rich fractions caused antiaggregative 
effects, whereas apoE-VLDL-poor fractions produced 
a strong proaggregative response (de Man et al., 2000; 
Olufadi & Byrne, 2006; Pedreno et al., 2000). Along 
with platelet activation, vLDL particles also impair 
fibrinolysis and disturbs coagulation cascade thus 
resulting in atherothrombotic risk (Olufadi & Byrne, 
2006). 

2. Conclusions
A large body of experimental evidence has emerged 

that highlights the importance of platelets in modulating 
immune and inflammatory responses. Experimental 
studies have shown that activated platelets directly 
contribute to cerebral amyloid angiopathy (CAA) by 
promoting the formation of β-amyloid (Aβ) aggregates 
and that Aβ, in turn, activates platelets, creating a 
feed-forward loop (Donner et al., 2016). The potential 
involvement of platelets in the pathogenesis of AD 
raises the intriguing prospect that antiplatelet therapy 
may alleviate fibril formation in cerebral vessels of 
AD patients. However, it is important to point out 
that clinical studies so far have not demonstrated any 
benefit of antiplatelet therapy using aspirin in patients 
with established AD (Bentham et al., 2008; Ryan et 
al., 2020). The appearance of amyloid deposits as a 
consequence of misfolded proteins is not restricted to 
AD but is a common finding in a range of pathologies, 
including diabetes and atherosclerosis (Herczenik et 
al., 2007). Neuropathological studies have shown that 
islet amyloid polypeptide deposition, co-localized 
with Ab deposits, is a common finding in the brain of 
patients with T2DM (Pruzin et al., 2018). Given the 
global epidemic of diabetes and cardiovascular disease, 
in conjunction with the limited efficacy of treatments 
for AD, it is worth to perform future investigations 
that will shed new light on the role of platelets in the 
pathogenesis of AD in subjects with diabetes. Most 
importantly, unfolding these mechanisms may herald 
the development of novel therapeutic strategies in the 
prevention or treatment of dementia in subjects with 
diabetes. 
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