13 research outputs found

    A SIX-PORT MEASUREMENT DEVICE FOR HIGH POWER MICROWAVE VECTOR NETWORK ANALYSIS

    Get PDF
    The changes experienced in technology due to the third industrial revolution have over the years contributed immensely to the development of efficient devices and systems. As a result, solutions have been provided to challenges encountered in the heating industry. However, higher efficiency and better performance has undoubtedly been highly sort after. This paper presents the complete industrial development of a new system of a microwave device for use in S-band networks (2.45 GHz ISM band in this application): a vector network analyzer (VNA). The VNA, which is designed based on the six-port measurement principle, provides accurate measurements of both magnitude and phase of the load reflection coefficient. The device is designed to have high power handling capabilities and works under the full operating conditions of high-power microwave generators. Initial measurements show that the device perform stable and can perform temperature-independent measurements over protracted periods. The system is suited for on-line monitoring and control of network parameters in industrial waveguide applications.

    Blockchain-IoT peer device storage optimization using an advanced time-variant multi-objective particle swarm optimization algorithm

    Get PDF
    The integration of Internet of Things devices onto the Blockchain implies an increase in the transactions that occur on the Blockchain, thus increasing the storage requirements. A solution approach is to leverage cloud resources for storing blocks within the chain. The paper, therefore, proposes two solutions to this problem. The first being an improved hybrid architecture design which uses containerization to create a side chain on a fog node for the devices connected to it and an Advanced Time‑variant Multi‑objective Particle Swarm Optimization Algorithm (AT‑MOPSO) for determining the optimal number of blocks that should be transferred to the cloud for storage. This algorithm uses time‑variant weights for the velocity of the particle swarm optimization and the non‑dominated sorting and mutation schemes from NSGA‑III. The proposed algorithm was compared with results from the original MOPSO algorithm, the Strength Pareto Evolutionary Algorithm (SPEA‑II), and the Pareto Envelope‑based Selection Algorithm with region‑based selection (PESA‑II), and NSGA‑III. The proposed AT‑MOPSO showed better results than the aforementioned MOPSO algorithms in cloud storage cost and query probability optimization. Importantly, AT‑MOPSO achieved 52% energy efficiency compared to NSGA‑III. To show how this algorithm can be applied to a real‑world Blockchain system, the BISS industrial Blockchain architecture was adapted and modified to show how the AT‑MOPSO can be used with existing Blockchain systems and the benefits it provides

    Adaptive Storage Optimization Scheme for Blockchain-IIoT Applications Using Deep Reinforcement Learning

    Get PDF
    Blockchain-IIoT integration into industrial processes promises greater security, transparency, and traceability. However, this advancement faces significant storage and scalability issues with existing blockchain technologies. Each peer in the blockchain network maintains a full copy of the ledger which is updated through consensus. This full replication approach places a burden on the storage space of the peers and would quickly outstrip the storage capacity of resource-constrained IIoT devices. Various solutions utilizing compression, summarization or different storage schemes have been proposed in literature. The use of cloud resources for blockchain storage has been extensively studied in recent years. Nonetheless, block selection remains a substantial challenge associated with cloud resources and blockchain integration. This paper proposes a deep reinforcement learning (DRL) approach as an alternative to solving the block selection problem, which involves identifying the blocks to be transferred to the cloud. We propose a DRL approach to solve our problem by converting the multi-objective optimization of block selection into a Markov decision process (MDP). We design a simulated blockchain environment for training and testing our proposed DRL approach. We utilize two DRL algorithms, Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO) to solve the block selection problem and analyze their performance gains. PPO and A2C achieve 47.8% and 42.9% storage reduction on the blockchain peer compared to the full replication approach of conventional blockchain systems. The slowest DRL algorithm, A2C, achieves a run-time 7.2 times shorter than the benchmark evolutionary algorithms used in earlier works, which validates the gains introduced by the DRL algorithms. The simulation results further show that our DRL algorithms provide an adaptive and dynamic solution to the time-sensitive blockchain-IIoT environment

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Multi-Agent Reinforcement Learning Framework in SDN-IoT for Transient Load Detection and Prevention

    No full text
    The fast emergence of IoT devices and its accompanying big and complex data has necessitated a shift from the traditional networking architecture to software-defined networks (SDNs) in recent times. Routing optimization and DDoS protection in the network has become a necessity for mobile network operators in maintaining a good QoS and QoE for customers. Inspired by the recent advancement in Machine Learning and Deep Reinforcement Learning (DRL), we propose a novel MADDPG integrated Multiagent framework in SDN for efficient multipath routing optimization and malicious DDoS traffic detection and prevention in the network. The two MARL agents cooperate within the same environment to accomplish network optimization task within a shorter time. The state, action, and reward of the proposed framework were further modelled mathematically using the Markov Decision Process (MDP) and later integrated into the MADDPG algorithm. We compared the proposed MADDPG-based framework to DDPG for network metrics: delay, jitter, packet loss rate, bandwidth usage, and intrusion detection. The results show a significant improvement in network metrics with the two agents

    A Lightweight Messaging Protocol for Internet of Things Devices

    No full text
    The move towards intelligent systems has led to the evolution of IoT. This technological leap has over the past few years introduced significant improvements to various aspects of the human environment, such as health, commerce, transport, etc. IoT is data-centric; hence, it is required that the underlying protocols are scalable and sufficient to support the vast D2D communication. Several application layer protocols are being used for M2M communication protocols such as CoAP, MQTT, etc. Even though these messaging protocols have been designed for M2M communication, they are still not optimal for communications where message size and overhead are of much concern. This research paper presents a Lightweight Messaging Protocol (LiMP), which is a minified version of CoAP. We present a detailed protocol stack of the proposed messaging protocol and also perform a benchmark analysis of the protocol on some IoT devices. The proposed minified protocol achieves minimal overhead (a header size of 2 bytes) and has faster point-to-point communication from the benchmark analysis; for communication over LAN, the LiMP-TCP outperformed the CoAP-TCP by an average of 21% whereas that of LiMP-UDP was over 37%. For a device to remote server communication, LiMP outperformed CoAP by an average of 15%

    An Overview of Technologies for Improving Storage Efficiency in Blockchain-Based IIoT Applications

    No full text
    Since the inception of blockchain-based cryptocurrencies, researchers have been fascinated with the idea of integrating blockchain technology into other fields, such as health and manufacturing. Despite the benefits of blockchain, which include immutability, transparency, and traceability, certain issues that limit its integration with IIoT still linger. One of these prominent problems is the storage inefficiency of the blockchain. Due to the append-only nature of the blockchain, the growth of the blockchain ledger inevitably leads to high storage requirements for blockchain peers. This poses a challenge for its integration with the IIoT, where high volumes of data are generated at a relatively faster rate than in applications such as financial systems. Therefore, there is a need for blockchain architectures that deal effectively with the rapid growth of the blockchain ledger. This paper discusses the problem of storage inefficiency in existing blockchain systems, how this affects their scalability, and the challenges that this poses to their integration with IIoT. This paper explores existing solutions for improving the storage efficiency of blockchain–IIoT systems, classifying these proposed solutions according to their approaches and providing insight into their effectiveness through a detailed comparative analysis and examination of their long-term sustainability. Potential directions for future research on the enhancement of storage efficiency in blockchain–IIoT systems are also discussed

    An Investigation into the Application of Deep Learning in the Detection and Mitigation of DDOS Attack on SDN Controllers

    No full text
    Software-Defined Networking (SDN) is a new paradigm that revolutionizes the idea of a software-driven network through the separation of control and data planes. It addresses the problems of traditional network architecture. Nevertheless, this brilliant architecture is exposed to several security threats, e.g., the distributed denial of service (DDoS) attack, which is hard to contain in such software-based networks. The concept of a centralized controller in SDN makes it a single point of attack as well as a single point of failure. In this paper, deep learning-based models, long-short term memory (LSTM) and convolutional neural network (CNN), are investigated. It illustrates their possibility and efficiency in being used in detecting and mitigating DDoS attack. The paper focuses on TCP, UDP, and ICMP flood attacks that target the controller. The performance of the models was evaluated based on the accuracy, recall, and true negative rate. We compared the performance of the deep learning models with classical machine learning models. We further provide details on the time taken to detect and mitigate the attack. Our results show that RNN LSTM is a viable deep learning algorithm that can be applied in the detection and mitigation of DDoS in the SDN controller. Our proposed model produced an accuracy of 89.63%, which outperformed linear-based models such as SVM (86.85%) and Naive Bayes (82.61%). Although KNN, which is a linear-based model, outperformed our proposed model (achieving an accuracy of 99.4%), our proposed model provides a good trade-off between precision and recall, which makes it suitable for DDoS classification. In addition, it was realized that the split ratio of the training and testing datasets can give different results in the performance of a deep learning algorithm used in a specific work. The model achieved the best performance when a split of 70/30 was used in comparison to 80/20 and 60/40 split ratios

    Blockchain interoperability: the state of heterogenous blockchain-to-blockchain communication

    No full text
    Blockchain technology has been increasingly adopted over the past few years since the introduction of Bitcoin, with several blockchain architectures and solutions being proposed. Most proposed solutions have been developed in isolation, without a standard protocol or cryptographic structure to work with. This has led to the problem of interoperability, where solutions running on different blockchain platforms are unable to communicate, limiting the scope of use. With blockchains being adopted in a variety of fields such as the Internet of Things, it is expected that the problem of interoperability if not addressed quickly, will stifle technology advancement. This paper presents the current state of interoperability solutions proposed for heterogenous blockchain systems. A look is taken at interoperability solutions, not only for cryptocurrencies, but also for general data-based use cases. Current open issues in heterogenous blockchain interoperability are presented. Additionally, some possible research directions are presented to enhance and to extend the existing blockchain interoperability solutions. It was discovered that though there are a number of proposed solutions in literature, few have seen real-world implementation. The lack of blockchain-specific standards has slowed the progress of interoperability. It was also realized that most of the proposed solutions are developed targeting cryptocurrency-based applications

    A Survey on Network Optimization Techniques for Blockchain Systems

    No full text
    The increase of the Internet of Things (IoT) calls for secure solutions for industrial applications. The security of IoT can be potentially improved by blockchain. However, blockchain technology suffers scalability issues which hinders integration with IoT. Solutions to blockchain’s scalability issues, such as minimizing the computational complexity of consensus algorithms or blockchain storage requirements, have received attention. However, to realize the full potential of blockchain in IoT, the inefficiencies of its inter-peer communication must also be addressed. For example, blockchain uses a flooding technique to share blocks, resulting in duplicates and inefficient bandwidth usage. Moreover, blockchain peers use a random neighbor selection (RNS) technique to decide on other peers with whom to exchange blockchain data. As a result, the peer-to-peer (P2P) topology formation limits the effective achievable throughput. This paper provides a survey on the state-of-the-art network structures and communication mechanisms used in blockchain and establishes the need for network-based optimization. Additionally, it discusses the blockchain architecture and its layers categorizes existing literature into the layers and provides a survey on the state-of-the-art optimization frameworks, analyzing their effectiveness and ability to scale. Finally, this paper presents recommendations for future work
    corecore