487 research outputs found

    Sox21b underlies the rapid diversification of a novel male genital structure between Drosophila species

    Get PDF
    The emergence and diversification of morphological novelties is a major feature of animal evolution. However, relatively little is known about the genetic basis of the evolution of novel structures and the mechanisms underlying their diversification. The epandrial posterior lobes of male genitalia are a novelty of particular Drosophila species. The lobes grasp the female ovipositor and insert between her abdominal tergitesand, therefore, are important for copulation and species recognition. The posterior lobes likely evolved from co-option of a Hox-regulated gene network from the posterior spiracles and have sincediversified in morphology in the D.simulans clade, in particular, over the last 240,000 years, drivenby sexual selection. The genetic basis of this diversification is polygenic but, to the best ofour knowledge, none of the causative genes have been identified. Identifying the genes underlyingthe diversification of these secondary sexual structures is essential to understanding theevolutionary impact on copulation and species recognition. Here, we show that Sox21b negatively regulates posterior lobe size. This is consistent with expanded Sox21b expression in D.mauritiana, which develops smaller posterior lobes than D.simulans. We tested this by generating reciprocal hemizygotes and confirmed that changes in Sox21b underlie posterior lobe evolution between these species. Furthermore, we found that posterior lobe size differences caused by the species-specific allele of Sox21b significantly affect copulation duration. Taken together, our study reveals the genetic basis for the sexual-selection-driven diversification of a novel morphological structure and its functional impact on copulatory behavior. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

    Modeling Life as Cognitive Info-Computation

    Full text link
    This article presents a naturalist approach to cognition understood as a network of info-computational, autopoietic processes in living systems. It provides a conceptual framework for the unified view of cognition as evolved from the simplest to the most complex organisms, based on new empirical and theoretical results. It addresses three fundamental questions: what cognition is, how cognition works and what cognition does at different levels of complexity of living organisms. By explicating the info-computational character of cognition, its evolution, agent-dependency and generative mechanisms we can better understand its life-sustaining and life-propagating role. The info-computational approach contributes to rethinking cognition as a process of natural computation in living beings that can be applied for cognitive computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201

    Efectos del proceso de secado sobre la composición en ácidos grasos, perfil fenólico, tocoferoles y actividad antioxidante de almendras barú (Dipteryx alata Vog.)

    Get PDF
    This study carried out a chromatographic and spectrophotometric characterization of the bioactive compounds, antioxidants, phenolics, tocopherols, sterols and fatty acids of baru almonds “in natura” and submitted to drying processes. It was determined that baru “in natura” almonds presented high levels of phenolic compounds, vitamin C, antioxidants, phenolics, sterols, total monounsaturated fatty acids and low thrombogenic, and atherogenic indexes. During the process of drying it at 65 °C for 30 minutes, a decrease was noted in the levels of caffeic acid, chlorogenic acid, anthocyanins, p-coumaric acid, ferulic acid, o-coumaric acid, quercetin, and polyunsaturated fatty acids. The same condition resulted in an increase in the levels of gallic acid, rutin, catechin, trans-cinnamic acid, vanillin, m-coumaric acid, tocopherols, monounsaturated fatty acids and antioxidant activity (ORAC and DPPH). When submitted to a temperature of 105 ºC for 30 minutes the same behavior was seen with a reduction in the vitamin C and ORAC contents and increased presence of flavonoids.Este estudio realizó una caracterización cromatográfica y espectrofotométrica de la presencia de compuestos bioactivos, antioxidantes, fenólicos, tocoferoles, esteroles y ácidos grasos en almendras del tipo baru “in natura” y sometidos a procesos de secado. Se detectó, en la almendra de baru “in natura”, altos contenidos de compuestos fenólicos, vitamina C, antioxidantes fenólicos, esteroles, ácidos grasos monoinsaturados totales y bajos índices de trombogénicos y aterogénicos. Durante el proceso de secado a 65 °C durante 30 minutos, se observó una disminución en los niveles de ácido cafeíco, ácido clorogénico, antocianinas, ácido p-cumárico, ácido ferúlico, ácido o-cumárico, quercetina y ácidos grasos poliinsaturados. De la misma manera se observó un aumento en los niveles de ácido gálico, rutina, catequina, ácido trans-cinámico, vanilina, ácido m-cumárico, tocoferoles, ácidos grasos monoinsaturados y actividad antioxidante (ORAC y DPPH). Cuando se sometió a una temperatura de 105 °C durante 30 minutos, presentó el mismo comportamiento, sin embargo, influyó en la reducción del contenido de vitamina C y ORAC y aumentó la presencia de flavonoides

    Castaing Instability and Precessing Domains in Confined Alkali Gases

    Get PDF
    We explore analogy between two-component quantum alkali gases and spin-polarized helium systems. Recent experiments in trapped gases are put into the frame of the existing theory for Castaing instability in transverse channel and formation of homogeneous precessing domains in spin-polarized systems. Analogous effects have already been observed in spin-polarized % ^{3}He and 3He4He^{3}He- ^{4}He mixtures systems. The threshold effect of the confining potential on the instability is analyzed. New experimental possibilities for observation of transverse instability in a trap are discussed.Comment: 6 RevTex pages, no figure

    Evidence for multiple colonisations and Wolbachia infections shaping the genetic structure of the widespread butterfly Polyommatus icarus in the British Isles

    Get PDF
    The paradigm of isolation in southern refugia during glacial periods followed by expansions during interglacials, producing limited genetic differentiation in northern areas, dominates European phylogeography. However, the existence of complex structured populations in formerly glaciated areas, and islands connected to mainland areas during glacial maxima, call for alternative explanations. We reconstructed the mtDNA phylogeography of the widespread Polyommatus icarus butterfly with an emphasis on the formerly glaciated and connected British Isles. We found distinct geographical structuring of CO1 haplogroups, with an ancient lineage restricted to the marginal European areas, including Northern Scotland and Outer Hebrides. Population genomic analyses, using ddRADSeq genomic markers, also reveal substantial genetic structuring within Britain. However, there is negligble mito-nuclear concordance consistent with independent demographic histories of mitochondrial vs. nuclear DNA. While mtDNA-Wolbachia associations in northern Britain could account for the geographic structuring of mtDNA across most of the British Isles, for nuclear DNA markers (derived from ddRADseq data) butterflies from France cluster between northern and southern British populations – an observation consistent with a scenario of multiple recolonisation. Taken together our results suggest that contemporary mtDNA structuring in the British Isles (and potentially elsewhere in Europe) largely results from Wolbachia infections, however, nuclear genomic structuring suggests a history of at least two distinct colonisations. This two-stage colonisation scenario has previously been put forth to explain genetic diversity and structuring in other British flora and fauna. Additionally, we also present preliminary evidence for potential Wolbachia-induced feminization in the Outer Hebrides

    Elementary excitations of trapped Bose gas in the large-gas-parameter regime

    Full text link
    We study the effect of going beyond the Gross-Pitaevskii theory on the frequencies of collective oscillations of a trapped Bose gas in the large gas parameter regime. We go beyond the Gross-Pitaevskii regime by including a higher-order term in the interatomic correlation energy. To calculate the frequencies we employ the sum-rule approach of many-body response theory coupled with a variational method for the determination of ground-state properties. We show that going beyond the Gross-Pitaevskii approximation introduces significant corrections to the collective frequencies of the compressional mode.Comment: 17 pages with 4 figures. To be published in Phys. Rev.

    Energy dependent scattering and the Gross-Pitaevskii Equation in two dimensional Bose-Einstein condensates

    Get PDF
    We consider many-body effects on particle scattering in one, two and three dimensional Bose gases. We show that at zero temperature these effects can be modelled by the simpler two-body T-matrix evaluated off the energy shell. This is important in 1D and 2D because the two-body T-matrix vanishes at zero energy and so mean-field effects on particle energies must be taken into account to obtain a self-consistent treatment of low energy collisions. Using the off-shell two-body T-matrix we obtain the energy and density dependence of the effective interaction in 1D and 2D and the appropriate Gross-Pitaevskii equations for these dimensions. We present numerical solutions of the Gross-Pitaevskii equation for a 2D condensate of hard-sphere bosons in a trap. We find that the interaction strength is much greater in 2D than for a 3D gas with the same hard-sphere radius. The Thomas-Fermi regime is therefore approached at lower condensate populations and the energy required to create vortices is lowered compared to the 3D case.Comment: 22 pages, 6 figure

    tartan underlies the evolution of male Drosophila genital morphology

    Get PDF
    Male genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic bases of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here, we show that divergence in clasper size and bristle number between Drosophila mauritiana and Drosophila simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell–cell interactions and affinity. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans, but differences in the expression of this gene in developing genitalia suggest that cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analyses of reciprocal hemizygotes that are genetically identical, except for the species from which the functional allele of trn originates, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans. Therefore, we have identified a gene underlying evolutionary change in the size of a male genital organ, which will help to better understand not only the rapid diversification of these structures, but also the regulation and evolution of organ size more broadly

    Unravelling the genetic basis for the rapid diversification of male genitalia between Drosophila species

    Get PDF
    In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species
    corecore