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We consider many-body effects on particle scattering in one-, two-, and three-dimensional~3D! Bose gases.
We show that atT50 these effects can be modeled by the simpler two-bodyT matrix evaluated off the energy
shell. This is important in 1D and 2D because the two-bodyT matrix vanishes at zero energy and so mean-field
effects on particle energies must be taken into account to obtain a self-consistent treatment of low-energy
collisions. Using the off-shell two-bodyT matrix we obtain the energy and density dependence of the effective
interaction in 1D and 2D and the appropriate Gross-Pitaevskii equations for these dimensions. Our results
provide an alternative derivation of those of Kolomeisky and co-workers. We present numerical solutions of
the Gross-Pitaevskii equation for a 2D condensate of hard-sphere bosons in a trap. We find that the interaction
strength is much greater in 2D than for a 3D gas with the same hard-sphere radius. The Thomas-Fermi regime
is, therefore, approached at lower condensate populations and the energy required to create vortices is lowered
compared to the 3D case.
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I. INTRODUCTION

Recent experiments on the quasicondensation of a t
dimensional gas of atomic hydrogen@3# and the possibilities
of confining dilute atomic gases in ‘‘low-dimensional’’ trap
@4,5# have stimulated interest in the possibilities of Bos
Einstein condensation in two-dimensional systems. It
long been known that, in the thermodynamic limit, Bose co
densation is not possible in two-dimensional homogene
systems at any finite temperature because long wavele
fluctuations destroy long-range coherence@6#. Instead such a
system undergoes a Kosterlitz-Thouless transition@7# and ac-
quires local coherence properties over a length scale de
dent on the temperature—a ‘‘quasicondensate’’@8#. In the
limit T→0 global coherence is achieved in homogeneous
systems and a true condensate then exists. In a trappe
system the modifications of the density of states caused
the confining potential enable a true condensate to exist e
at finite temperatures@9#.

In most treatments of a Bose condensed gas in 3D,
ticle interactions are described by ad-function contact po-
tential whose strength is determined by the zero energy
momentum limit of the two-bodyT matrix (T2b) that de-
scribes scattering in a vacuum. This leads to the stand
form of the interaction potential (4p\2a3D /m)d(r ), where
a3D is thes-wave scattering length. At higher order it can
shown that the interactions are actually described by a ma
body T matrix (TMB) @10–12# which accounts for the fac
that collisions occur in the presence of the condensate ra
than in free space. In 2D this correction is critical becau
the 2D two-bodyT matrix vanishes in the zero energy lim
@2,13#, and thus we must include this correction~at least
partially! even at leading order@14#. In this paper we develop
an expression for the many-bodyT matrix in terms of the
two-bodyT matrix evaluated at a shifted effective interacti
energy. In one and two dimensions we obtain an effec
interaction that depends on the energy of the collision,
1050-2947/2002/65~4!/043617~10!/$20.00 65 0436
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contrast with three-dimensional gases.
The energy dependence of the effective interaction can

written as a density dependence, in which form the res
can be applied to trapped gases. This leads to a Gr
Pitaevskii equation~GPE! describing the condensate wav
function that no longer has a cubic non-linearity inc, but
instead goes asucu4c in 1D and as (ucu2/lnucu2)c in 2D.
Such a modified GPE has already been introduced by
lomeisky @1,2# and Tanatar@15#, using arguments based e
ther on the renormalization group or a Kohn-Sham dens
functional approach@16#. Our discussion in this paper is t
show how essentially the same results can be obtained
consideration of many-body effects on particle scattering
to relate this to well-understood treatments of the 3D Bo
gas. Indeed, substantially the same treatment as used in
applied to the 1D and 2D gases leads to the energy de
dent effective interactions. The principle difference is th
these effects must be taken into account in leading or
whereas in 3D they can be neglected in the simplest tr
ments and only become important at finite temperature
high density.

In the following section we discuss the Gross-Pitaevs
equation, and the limits in which a system may be conside
two dimensional. In Sec. III we then derive the many-bo
effective interaction for low-dimensional gases, before co
sidering its implications for 1D gases in Sec. IV. Finall
using this effective interaction we obtain a form of the tw
dimensional Gross-Pitaevskii equation, and we present
results of numerical solutions for both ground and vort
states in Sec. VI.

II. THE GROSS-PITAEVSKII EQUATION IN 2D
AND QUASI-2D

The macroscopic wave function for a Bose-Einstein co
densate~BEC! is found in mean-field theory using a nonlin
ear Schro¨dinger equation known as the Gross-Pitaevs
equation—where the nonlinear term arises from interacti
©2002 The American Physical Society17-1

https://core.ac.uk/display/15027936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on
th

ee
E

n
e

-

a
n-

r t
o

ht
a

tly

n-

er

o

nd
ee

d
io
u
e

-

ions

ns
the

n
trov
-
tion

pa-

i-

is
ully

ial
-
it
at-

D
f a

fact

s
ill

for

-
.

-
-

M. D. LEE, S. A. MORGAN, M. J. DAVIS, AND K. BURNETT PHYSICAL REVIEW A65 043617
between the atoms of the condensate. Obtaining the form
the effective interaction in 2D, and describing its effect
the solutions of this equation are the main concerns of
paper.

Currently, most BEC experiments have created thr
dimensional condensates, which are described by a GP
the form

2
\2

2m
¹2c~r !1Vtrap~r !c~r !1N0g3Duc~r !u2c~r !5mc~r !,

~1!

where Vtrap(r ) is the external trapping potential,N0 is the
condensate population,m the chemical potential, andg3D is
the coupling parameter describing the effective interactio
The coupling parameter is generally taken to be the z
energy and momentum limit of the two-bodyT matrix that in
3D is a nonzero constantg3D54p\2a3D /m, wherea is the
s-wave scattering length. TheT matrix has the contact poten
tial form T2b(r ,r 8)5g3Dd(r2r 8)d(r ) in the limit that all the
momenta involved in typical collisions are much less th
1/Re , whereRe is the range of the actual interatomic pote
tial ~which is not in general equal to the scattering lengtha).

The obvious extension of these experiments in orde
achieve the goal of two-dimensional condensates is to c
fine a gas in an anisotropic trap such that the gas is tig
confined in thez direction. For a harmonic potential such
trap has the formVtrap(r )5mv2/2(r21z2/g), with l z

[A\/2mvz as the characteristic trap length in the tigh
confined direction, wherevz[v/g1/2. On decreasingl z ~de-
creasingg) the system will pass from being three dime
sional to being two dimensional in a variety of senses.

The system can first be called two dimensional oncel z has
merely been decreased sufficiently that the mean-field en
of the condensate is small compared to\vz . In this case the
dynamics of the system in thez dimension are restricted t
zero-point oscillations. Nonetheless, ifl z is still much greater
thana3D , then two body collisions are hardly affected, a
hence interactions can still be described by the thr
dimensional contact potentialg3D . Therefore, although in
this case the third dimension can be factored out of the
namics of the system, at short length scales the interact
are still three dimensional. This regime can be described
ing the 3D GPE of Eq.~1! with the assumption that the wav
function can be factorized as

C~r,z!5c~r!S mvz

p\ D 1/4

expS 2
mvz

2\
z2D . ~2!

Substituting into the 3D GPE, and integrating overz leads to
a two-dimensional equation

2
\2

2m
¹r

2c~r!1
1

2
mv2r2c~r!1g8N0uc~r!u2c~r!

5m8c~r!, ~3!

where r5$x,y%, m85m2\vz/2, and the coupling param
eter g8 is given by g3D8 5(mvz/2p\)1/2g3D . The subscript
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here refers to the three-dimensional nature of the interact
whilst the prime indicates thatg3D8 is a two-dimensional
quantity.

The above factorization of the wave function remai
valid as l z is decreased further, but the assumption that
scattering is unaffected begins to break down whenl z is not
much greater thana3D . The effect of the confinement o
particle interactions has been discussed in detail by Pe
and Shlyapnikov@17,18#, who found that a 2D contact po
tential can still be used but that the strength of the interac
becomes dependent upon the confinement. The coupling
rameter that they obtained in this ‘‘quasi-2D’’ regime is

gq2D8 5S 8pvz\
3

m D 1/2F 1

a3D
1S mvz

2p\ D 1/2

lnS B\vz

2mp D G21

, ~4!

where B'0.915. This expression is valid when the cond
tions mgq2D8 /2p\2,Re / l z ,2m/\vz!1 are satisfied. In the
large l z limit the 1/a3D term dominates and the scattering
three-dimensional as considered above. However in the f
2D limit the logarithmic term in Eq.~4! dominates andg
becomes dependent uponm. Equation~4! was derived from
solving the two-body scattering problem within the potent
causing the tightz confinement. We will now show how es
sentially the same result can be obtained in the fully 2D lim
by a consideration of the many-body effects on particle sc
tering.

III. THE T MATRIX IN THE GPE

In order to describe the interactions within a truly 2
BEC we must consider 2D scattering in the presence o
condensate. This is described by a many-bodyT matrix TMB ,
and the coupling parameter that appears in the GPE is in
given by the matrix element^k8uTMB(E)uk& evaluated in the
limit of zero momentum and energy (k,k8,K ,E50). Note
that the many-bodyT matrix is, in principle, also a function
of the center-of-mass momentumK , but this will not be ex-
plicitly indicated in this paper for notational simplicity. Thi
will not be important for the results presented since we w
always take the limitK50 in this paper.

Before discussing the many-bodyT matrix, however, we
will first consider the simpler two-bodyT matrix that de-
scribes collisions between two particles in a vacuum and
which analytical expressions exist@19# . We will then show
how the many-bodyT matrix can be obtained from the two
body version in the limit appropriate for the study of BEC

A. The two-body T matrix

The two-bodyT matrix describing scattering from an in
terparticle potentialV(r ) is the solution to the Lippmann
Schwinger equation@20#

^k8uT2b~Ē!uk&5^k8uV~r12r2!uk&1(
q

^k8uV~r12r2!uq&

3
1

Ē2~«K /21q
sp 1«K /22q

sp !
^quT2b~Ē!uk&, ~5!
7-2
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wherek andk8 are the relative momenta of the two particl
before and after the collision respectively, andK is the
center-of-mass momentum. The energy of a single-part
state is«k

sp , where in the homogeneous limit«k
sp5\2k2/2m.

The total energy of the collision isĒ and includes a contri-
bution from the center-of-mass momentumK that cancels
the corresponding contribution from the single-particle en
gies. The two-bodyT matrix is, therefore, independent ofK ,
as it must be in free space.

The scattering event described here could be a single
teraction ^k8uVuk&, or alternatively the particles may firs
make a transition to an intermediate stateuq& ~weighted by
an energy dependent denominator! before interacting again
to emerge in stateuk8&. The recursive nature of Eq.~5! sums
all possible processes for whichuk&→uk8&. For many appli-
cations we only need the ‘‘on-shell’’T matrix where both the
energy and momentum conservation laws are fulfilled. Ho
ever, it is also useful to consider the more general off-sh
form shown above, where the momenta and energy may
arbitrary values.

It can be shown that, for interaction potentials of a fin
rangeRe , the T matrix is independent of the incoming an
outgoing momenta~in the limit kRe ,k8Re!1! @19#. In the
position representation this corresponds to an effective in
action that is proportional tod(r12r2). This contact poten-
tial approximation is of great utility in solving the GP
where the zero-momentum limit of theT matrix is used to
describe particle interactions. In the three-dimensional c
the T matrix elements at low energy and momenta are a
independent of energy, leading to a constant coupling par
eter in the GPE with formg3D54p\2a3D /m in Eq. ~1!.

The contact potential approximation is still valid in on
and two dimensions, but theT matrix at leading order now
depends upon the energy of the collision, as will be show
the following sections. Thus the scattering terms in the
GPE will be quite different from the three-dimensional ca

B. The many-bodyT matrix

The two-bodyT matrix describes collisionsin vacuo in
which the intermediate states are single particle in nat
However, in a Bose condensed gas collisions occur in
presence of a condensate and a many-bodyT matrix is
needed to describe scattering processes. This is define
the equation

^k8uTMB~E!uk&5^k8uV~r12r2!uk&1(
q

^k8uV~r12r2!uq&

3
~11nK /21q1nK /22q!

E2~«K /21q1«K /22q!
^quTMB~E!uk&,

~6!

whereE is the interaction energy, and«q is the energy of a
quasiparticle state of momentumq, which is given by

«p5@~«p
sp!212«p

spm#1/2, ~7!
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in the Bogoliubov approximation@21# for the case of the
hard-sphere gas. The corrections included in this many-b
T matrix over the two-body version are the occurrence
quasiparticle rather than particle energies for the interme
ate states, and the Bose enhancement of scattering into
states. This latter effect results in the presence of popula
factorsnq in Eq. ~6!.

Formally, this many-bodyT matrix is included in the
theory of a Bose condensed gas by considering the effec
the so-called anomalous average^âi â j& on the condensate
evolution, whereâi is the noncondensate annihilation oper
tor for statei. This term occurs when terms in the Ham
tonian of higher than quadratic order inâi ,âi

† are taken into
account@10,29#. We note that a generalization of the man
body T matrix that includes quasiparticle propagator facto
for the intermediate states has been proposed@11#, but the
corrections this includes over and above Eq.~6! are of still
higher order.

We note that the energies«q andE in TMB are measured
relative to the condensate, whereas the single-particle e
gies inT2b are measured relative to the energy of a station
particle. This means that for collisions between particles
the condensate we take the limitE50 in TMB , which corre-
sponds toĒ52m when measured relative to the same zero
energy as the two-body case@10#. For collisions between
condensate atoms, we also take the zero-momentum
k,k8,K50. Interactions between two condensate atoms
therefore, described by the matrix element^0uTMB(0)u0&.

C. TMB in terms of T2b , a simple argument

The Lippmann-Schwinger equation for the many-bodyT
matrix is substantially more difficult to solve than the tw
body equivalent due to the presence of quasiparticle ener
and populations. In the limit of zero temperature we w
show that the many-bodyT matrix can be approximated b
an off-shell two-bodyT matrix evaluated at a negative en
ergy. To see this we consider Eq.~6! for the matrix element
^0uTMB(0)u0& at T50 where the population terms vanis
Upon comparison with Eq.~5! it can be seen that the onl
difference between the equations for the two types ofT ma-
trix occurs in the energy denominators. Specifically, the q
siparticle energy spectrum appears in the many-body c
whereas the single-particle spectrum appears in the two-b
case. Heuristically, if the dominant contribution to the inte
mediate states in a collision comes from states with ener
of order m or higher, we can proceed by replacing«k by
«k

sp1m. This is the high-energy limit of the Bogoliubo
spectrum of Eq.~7! and it contains a constant shift from th
single-particle spectrum due to the mean-field effects of
condensate that do not vanish in the relevant momen
range k;k0 for a contact potential interaction~where
\2k0

2/2m[m). We are interested in the many-bodyT matrix
at E50, and thus the energy denominator in Eq.~6! becomes

1

02~«K /21q1«K /22q!
'

1

02~«K /21q
sp 1m1«K /22q

sp 1m!

5
1

22m2~«K /21q
sp 1«K /22q

sp !
. ~8!
7-3
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Comparison with Eq.~5! for the two-bodyT matrix shows
that in this approximation

^0uTMB~0!u0&5^0uT2b~22m!u0&. ~9!

Interestingly, this shows that the effective two-body intera
tion energy is negative, meaning that the interaction stren
is always real. We will see that this is important in the 1
case in the following section. In 3D the two-bodyT matrix is
independent of energy to first order, but in both one and
dimensions it has a nontrivial energy dependence and, th
fore, the effective interaction energy becomes importan
these lower dimensions.

At first glance the result of Eq.~9! may appear counterin
tuitive since the energy of a collision between two cond
sate particles might be thought to be12m, and certainly not
negative. However, as we have shown, the many-body
fects in the system lead to a shift in the quasiparticle ene
spectrum and it is this that leads to a shifted effective ene
entering the two-bodyT matrix. Stoof and co-workers
@22,23# have also proposed that interactions in lo
dimensional condensates can be described by the two-boT
matrix evaluated at a negative energy (22m), the same re-
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sult given by our heuristic argument above. In the followi
section we will use a more rigorous argument and find t
this leads to somewhat better values for the effective in
action energy.

D. TMB in terms of T2b , a better argument

Having shown heuristically in the preceding section th
the many-bodyT matrix can be approximated by a two-bod
T matrix evaluated at a negative energy, we will now pres
a more formal justification. This will lead to a slight modifi
cation to the magnitude of the energy used in the two-bodT
matrix, but the essential physics of the argument is
changed.

From Eqs.~5! and ~6!, it is possible to derive an expres
sion for the many-bodyT matrix solely in terms of the two-
body T matrix @10#

^k8uTMB~E!uk&5^k8uT2b~Ē!uk&1^k8uTcorr~E,Ē!uk&,
~10!

where
^k8uTcorr~E,Ē!uk&5 (
qÞ0

^k8uT2b~Ē!uq&~11nK /21q1nK /22q!^quTMB~E!uk&
E2~«K /21q1«K /22q!

2(
q

^k8uT2b~Ē!uq&^quTMB~E!uk&

Ē2~«K /21q
sp 1«K /22q

sp !
. ~11!
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If we now assume that there is a value ofĒ5Ē* for which

^k8uTMB(E)uk&5^k8uT2b(Ē)uk&, we can replaceTMB(E) on
the right-hand side of Eq.~11! by T2b(Ē* ). The value ofĒ*
may then be found by solving for̂k8uTcorr(E,Ē* )uk&50.
We again take the limit of zero temperature, such t
nK /21q ,nK /22q are zero, and for collisions between two a
oms in the condensate we take the limitk,k8,K ,E50. The
value ofĒ* is then given inD dimensions by the solution to

05E
0

` k(D21)

22«k
dk2E

0

` k(D21)

Ē* 2\2k2/m
dk. ~12!

Substituting the Bogoliubov dispersion relationship for t
quasiparticle energies using Eq.~7! and carrying out the in-
tegrals in Eq.~12! we can obtain expressions forĒ* . We are
then able to express the coupling parameter that occurs in
GPE in terms of the two-bodyT matrix evaluated at the
energiesĒ* . In two and three dimensions this leads to

g5^0uTMB~0!u0&5H ^0uT2b~2m!u0& in 2D,

^0uT2bS 2
16

p2 m D u0& in 3D.

~13!

However, in 1D the situation is more complicated beca
the first integral is logarithmically divergent. This case w
t

he

e

be dealt with in Sec. IV where we show that the resu
obtained are consistent with known exact results. Prior
that however, we derive in the following section the form
the many-bodyT matrix in two dimensions and show that th
effective interaction energy becomes important in this ca

E. The many-bodyT matrix in two dimensions

We consider the case of a 2D Bose gas with an in
atomic potentialV(r) that is short range, parameterized by
lengtha2D , and which admits no bound states. Specifica
we consider the case of a ‘‘hard-disk’’ potential such th
V(r)5` for uru<a2D and V(r)50 otherwise. In recent
work @19# we have derived a full expression for the two-bo
T matrix for this potential in the general off-shell case. In t
limit ka2D ,k8a2D!1 the result is

^k8uT2b~E!uk&5
4p\2/m

p i 22gEM2 ln~Ema2D
2 /8\2!

, ~14!

wheregEM is the Euler-Mascheroni constant. The correctio
are of order (ka2D)2 and (kEa2D)2/ln(kEa2D) or greater,
wherekE

25Em/\2. This result agrees with the work of Stoo
@24#, and also in the half-on-shell limit with the earlier wor
of Schick@14# and Bloom@25#. It is also of the same form a
the results obtained by Fisher and Hohenberg@13# who con-
sidered the case of a Gaussian interatomic potential, im
7-4
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ing that the result is general for most short-range repuls
potentials that may be parameterized by a lengtha2D . In this
low-momentum limit theT matrix is independent of bothk
andk8 and thus it is still represented in position space b
d-function effective interaction potential. The new featu
compared to the 3D case is that theT matrix now depends on
energy and, in particular, it vanishes asE→0. It is, therefore,
crucial to take into account the many-body shift in the effe
tive collision energy of two condensate atoms. This is now
self-consistent problem as many-body effects give rise t
nonzero coupling constant. In 3D the two-bodyT matrix is
non-zero asE→0 and many-body effects can, therefore,
neglected at leading order for dilute gases.

From Eqs.~13! and ~14! the many-bodyT matrix, and,
therefore, the coupling parameter, in 2D is found to be

g2D5^0uT2b~2m!u0&52
4p\2

m

1

ln~mma2D
2 /4\2!

,

~15!

where terms of order 1/@ ln(mma2D
2 /4\2)#2 or greater have

been neglected. Note that the evaluation of the two-bodT
matrix at a negative energy means that the imaginary c
ponent in Eq.~14! vanishes, and thus the many-bodyT ma-
trix is real.

The parameter that appears in this description of the
terparticle interactions is the two-dimensional scatter
length a2D , analogous to the 3Ds-wave scattering length
a3D that parametrizes three-dimensional collisions in c
dilute gases. Reliable values ofa3D have been obtained in
3D by experimental measurements, and potentiallya2D could
be measured in this manner. However, in their work
quasi-2D scattering processes Petrov and Shlyapnikov@18#
also derived an expression for this parameter in terms of
three dimensionala3D , and the confinement of the trap in th
tight directionl z,

a2D54Ap

B
l z expS 2Ap

l z

a3D
D , ~16!

whereB'0.915. Using this expression fora2D in Eq. ~15!
we obtain the quasi-2D coupling parameter of Petrov a
Shlyapnikov given in Eq.~4!, and our approach, therefore
agrees with their results in the genuine 2D limit that is a
propriate forl z&a3D .

Using this expression we are able to compare the stre
of the 2D and quasi-2D coupling parameters with the para
eter for quasi-2D gases with 3D scatteringg3D8 described in
Sec. II. These quantities are displayed as a function of
width in thez dimension in Fig. 1. It can easily be seen th
the size of coupling parameter appearing in the GPE for
genuine 2D case is over an order of magnitude greater
in the case where the scattering is essentially 3D in na
( l z /a3D@1). The magnitude ofg2D decreases slowly asl z is
decreased beyond;a3D/2 ~not shown on the graph! due to
the size ofa2D determined from Eq.~16!, and it matches the
3D scattering limit forl z /a3D*10.
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IV. THE MANY-BODY T MATRIX IN ONE DIMENSION

Before we use the result in the preceding section to so
the two-dimensional GPE, we briefly consider the on
dimensional case. Our discussion in this section is not
tended to be rigorous, but is meant instead to demonstrate
importance of including many-body effects, via the man
bodyT matrix, when considering the properties of a Bose g
in low dimensions.

A one-dimensional condensate is described by the Gr
Pitaevskii equation

2
\2

2m
¹2c~x!1Vtrap~x!c~x!1N0g1Duc~x!u2c~x!5mc~x!,

~17!

whereg1D is the one-dimensional coupling parameter. T
use of the GPE necessarily assumes the existence of a
densate, which in one dimension implies that the syst
must be confined in a trap and, therefore, of a finite size
a homogeneous 1D system a true condensate may not
in the thermodynamic limit due to the density of stat
@6,26#. With this caveat in mind we will use the 1D case
illustrate the importance of the energy dependence of
many-bodyT matrix. Specifically we will consider the one
dimensional analogue of a hard-sphere gas for which e
results exist. This gas has an interatomic potential of
form

V~x!5H 0 for uxu.a1D,

` for uxu<a1D .
~18!

In a recent paper@19# we have used an inhomogeneo
Schrödinger equation to obtain results for the general o
shell two-bodyT matrix for hard-sphere gases in one, tw
and three dimensions. In one dimension in the limit of ze
momenta the result is

FIG. 1. Log-log graph of the effective 2D interparticle intera
tion strength as a function of confinement in the third dimensi
The solid line showsgq2D8 that describes scattering in quasi-2

gases, taken from Ref.@18#. Our results forg2D derived in this
paper are consistent with this result and were derived for the re
of validity shown. The dashed line showsg3D8 that is the expected
limit at large l z /a3D .
7-5
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^0uT2b~E!u0&55 2
2

a1D
S \

Am
iAEa1D1Ea1D

2 D for E.0,

2

a1D
S \

Am
AuEua1D2Ea1D

2 D for E,0.

~19!

As in the two-dimensional case, theT matrix is dependent on
the collision energy even at lowest order, and so the shif
an effective interaction energy predicted in Sec. III C due
many-body effects is again important. Furthermore, in
case thatEa1D

2 !1, the leading-order term in theT matrix in
1D is imaginary if E is positive. The shift to anegative
effective interaction energy is, therefore, critical in this on
dimensional case.

In order to obtain the many-bodyT matrix in terms of this
two-bodyT matrix we must solve Eq.~12!. As noted earlier
the first integral in this equation is logarithmically diverge
in 1D. Physically this arises from the fact that a true cond
sate does not exist in a homogeneous 1D system. Instea
a single quantum level with a macroscopic occupation~as
occurs in a true condensate!, in 1D there is a band of low-
energy levels that all have large occupations. The sa
methods as discussed above may still be used in the 1D c
however, provided that we now define the ‘‘condensate’’ a
band of levels in momentum space up to a cutoff atkmax,
such that the 1D ‘‘condensate density’’n0[(ki,kmax

ni satis-

fies n0;n ~as for a true condensate!. Using this definition,
the lower limit of the first integral in Eq.~12! should then be
kmax and the divergence is removed. This approach is ju
fied for a confined 1D system since we may assume
existence of a condensate due to the modification to the
sity of states that also removes the divergence.

A reasonable value forkmax may be obtained from the
momentum distribution for a system of impenetrable boso
Such a distribution is discussed in Ref.@27#. We will define
kmax by the criterion thatN(k.kmax),1, which giveskmax
'0.25pn0 @27#. Using this as the cutoff in Eq.~12!, a solu-
tion may be found forĒ* by making the ansatz thatĒ*
52Cm, where C is a constant. For the hard-sphere ca
considered here the ansatz is satisfied whenC is the solution
to

tanh21F 2

A~0.25p!2/4C14
G5

p2

C
. ~20!

This can be solved numerically to giveC'3.4. The expres-
sion for the many-bodyT matrix in 1D to leading order is
then

g1D5^0uT2b~2Cm!u0&5A4C\2m/m. ~21!

We now consider a homogeneous 1D Bose gas, using
above definition of the condensate. When this system i
the ground state the contributions in the GPE from the c
vature of the wave function and the trapping potential b
vanish, and, therefore,
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m1D5n0g1D5
4C\2

m
n0

2 . ~22!

This form differs from that found in 3D wherem}n0 be-
cause of the dependence ofg1D on the chemical potential.

This result can also be explained heuristically, as the e
curvature introduced into the wave function by the prese
of the other atoms. If we consider a many-body wave fu
tion that scatters off a hard-sphere potential of rangea1D ,
then in the limit of zero energy, we need to solved2c/dx2

50. We impose the boundary conditions thatc(x)50 at x
5a1D andc(x) approaches an asymptotic valuex at largex.
Since c is a many particle wave function, the distance
which it must arrive at its asymptotic value will be of th
order of the interparticle spacingl 0. This gives a solution to
the scattering problem of

c~x!5
x

l 02a1D
~x2a1D! for a1D,x& l 0 . ~23!

The extra energy caused by the curvature of the wave fu
tion in this region is then

2
\2

2mE
a

l 0
u“c~x!u2dx'2

\2uxu2

2ml0
. ~24!

And sincel 051/n0 and uxu25n0 we have that the interpar
ticle interactions make a contribution to the energy th
scales asn0

2. The same result may be derived from an ev
simpler argument that considers each particle to be confi
in an infinite square well of length;1/n by its nearest neigh-
bors.

The exact result form in such a 1D gas has long bee
known. In solving the system of 1D interacting bosons
demonstrating equivalence with a gas of 1D noninteract
fermions, Girardeau@28# showed that in the strong couplin
limit ~appropriate to the hard-sphere potential conside
above!

m5
p2

2

\2

m
n2. ~25!

Our result, therefore, shows the correct dependence onn2,
but disagrees on the numerical factor. The disagreemen
due to the fact that, as previously mentioned, in a homo
neous 1D system there can never be a true Bose conden
so significant corrections to the GPE can be expected.
additional uncertainty in the choice ofkmax also introduces a
source for discrepancy in the numerical factor. However,
agreement with the dependence onn2 indicates that the en
ergy dependent many-bodyT matrix appears to deal with th
interactions correctly. This is interesting because it me
that an intrinsically many-body effect, namely, particle co
finement by neighbors, can be modeled by an off-shell tw
body T matrix evaluated at a shifted effective interactio
energy, which is the essential argument of this paper. T
suggests that the method will have at least qualitatively
correct density dependence in the strong coupling limit
more detailed investigation of this approach in the 1D c
7-6
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will be the subject of a further paper. Although our discu
sion in this section has been qualitative due to the lack o
true condensate in a 1D homogeneous system even at
temperature, in a trapped 1D system it is possible for a
condensate to form. We expect, therefore, that semiquan
tive results outside the normal BEC regime of validity can
achieved using this method. In two dimensions a true c
densate can be formed, even in a homogeneous syste
T50 and so we expect our 2D results in this paper to
quantitatively correct.

V. SCATTERING IN INHOMOGENEOUS GASES

In the previous two sections we presented expressions
the many-bodyT matrix in one and two dimensions in term
of the two-bodyT matrix evaluated at shifted effective inte
action energies. However, the results obtained are str
only valid for homogeneous systems since we have not
counted for any modifications of the scattering wave fu
tions due to the presence of a confining potential. We c
sider here the case of a gas confined tightly in one or
dimensions~in order to reduce the dimensionality, as d
cussed in Sec. II! and weakly in the remaining dimensions o
a length scalel trap.

Provided that the range of the interatomic potentialRe is
much smaller thanl trap then the scattering will be locally
homogeneous and we can replacem where it occurs in Eqs
~15! and~21! by the homogeneous expressionm5n0g. This
is a form of local-density approximation and, as the dens
of an inhomogeneous gas is spatially dependent, this lead
spatially dependent coupling parameters. Recognizing
n0(r )5N0uc(r )u2 the coupling parameters in one and tw
dimensions are

g1D5
4C\2N0

m
uc~x!u2, ~26!

g2D52
4p\2

m
@ ln~N0puc~r!u2a2D

2 !#21

1oS ln@ ln~n0a2D
2 !#

ln~n0a2D
2 !

D . ~27!

These results agree with the work of Kolomeisky and
workers @1,2# who obtained similar expressions based on
renormalization-group analysis. Such density dependent
pling parameters are also expected from the results
density-functional theory@16# that predict that the energy o
the system is a functional of the density only. The sa
results may be obtained from mean-field theory by incor
rating the spatially dependent anomalous average^âi â j& into
the system of equations governing a condensate and so
self-consistently@29#.

VI. 2D SOLUTIONS OF THE NONLINEAR SCHRO¨ DINGER
EQUATION

In this section we present solutions of the GPE for
trapped two-dimensional gas. The solutions are found fo
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given m by propagating the time-dependent GPE forward
imaginary time from an initial approximate solution to obta
both the ground-state wave function and the nonlinea
g2DN0. As mentioned in the preceding section the coupli
parameter in two dimensions in a trap is spatially depend
having a logarithmic dependency on the density. Howev
since in two dimensions the spatial dependence is me
logarithmic it will have little effect on the solutions of th
GPE, except at the very edges of the trap where the w
function vanishes. We, therefore, use the homogeneous
tem coupling parameter of Eq.~15!, which will illustrate the
features of most interest.

Using the expression for the 2D coupling parameter fou
in Eq. ~15! we solve the two-dimensional time-independe
Gross-Pitaevskii equation for a 2D Bose condensate in a
with Vtrap(r)5 1

2 mv2r2. We can make the GPE dimension
less, scaling all energies by\v and all lengths byl r

5A\/(2mv), giving

2¹̃2c~r̃ !1Ṽtrap~ r̃ !c~ r̃ !1N0g̃2D~m̃ !uc~r̃ !u2c~r̃ !5m̃c~ r̃ !,

~28!

where g̃2D(m̃)528p/ ln(m̃ã2D
2 /8) and Ṽtrap( r̃)5 1

4 r̃2. Note

that the quantitym̃ã2D
2 is small compared to unity~or the

earlier expansion of theT matrix elements fails! and, there-
fore, the interaction is repulsive. As shown earlier, for t
range ofm and N0 that we consider here, we find that E
~15! leads to a value forg̃2D(m̃) which is more than an orde
of magnitude greater than the equivalent value for
quasi-2D gas in which the particle interactions are effectiv
3D in nature. Thus the nonlinear term in the GPE is mo
significant in two dimensions than in the 3D case.

A. Ground-state solutions

Figure 2 presents sample solutions for the ground stat
a 2D BEC in a trap for differing values ofm̃. To illustrate the
physical quantities involved we give numbers for a gas i
trap of v52p3100 Hz and with a scattering paramet
given bya2D56 nm. This is close to the 3Ds-wave scatter-
ing lengtha3D found for 87Rb, and, therefore, from Eq.~16!
this corresponds to a situation wherel z'a3D . We see that at
low N0 the solution is approximately the Gaussian wa
function that is expected for the noninteracting case.
higher N0 the Thomas-Fermi approximation found by n
glecting the contribution to the GPE from the kinetic ener
term as compared to the interaction and trapping term
expected to be a good description. In two dimensions
Thomas-Fermi approximation gives a density profile in t
form of an inverted parabola

uc~r̃ !TFu252
ln~m̃ã2D

2 /8!

N08p
@m̃2Ṽtrap~ r̃ !#u~m̃2Ṽtrap~ r̃ !!,

~29!

whereu(x) is the step function. At higherN0 the solutions
shown are generally very well approximated by the Thom
Fermi form, except at the boundary region of the condens
Indeed we find that the Thomas-Fermi approximation wo
7-7
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well for the 2D case, due to the high strength of the scat
ing, as expected from the dimensionless GPE~28!. For the
nonlinear term to dominate the kinetic-energy term requ
that N0

2D@2 ln(m̃ã2D
2 /8) ~where m̃;10–100), while in the

three-dimensional case we requireN0
3D@1/ã3D . Putting typi-

cal numbers into this using our parameters we getN0
2D@10,

while N0
3D@100, and thus the Thomas-Fermi regime

reached in 2D with about an order of magnitude fewer ato
than is the case for 3D. As confirmation of this, the Thom

FIG. 3. N0 vs m for a 2D Bose gas. The dots represent solutio
of the GPE with the full energy dependent interaction given in E
~15!. The lines are results which assume a constant~independent of
m) coupling parameterg2D . The three constant values ofg2D cor-
respond to Eq.~15! evaluated atm equal to 6\v ~dotted!, 25\v
~dashed!, and 50\v ~solid!.

FIG. 2. ~a! Ground-state 2D GPE solutions in an axisymmet

trap for m52, 10, 20, 30, 40, and 50\v. c( r̃) is normalized to
unity, and populations given assume parametersv52p

3100 Hz, a2D56 nm. ~b! Comparison of GPE solution form̃
550 ~solid line! with Thomas-Fermi approximation~dashed line!.
04361
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Fermi approximation for the number of condensate atom
N052m2 ln(mma2D

2 /4\2)/(2\v)2 and is found to be in
agreement with the numerical results to within one perc
onceN0 was greater than 300.

In some previous papers@30# the GPE has been solve
with g2D approximated by an energy independent consta
This is appropriate to the case where the scattering is th
dimensional, but not to the fully 2D case whereg2D depends
on m. We find here that the interaction strength given by E
~15! increases by about 50% asm rises from 2\v to 50\v.
Figure 3 shows the possible errors that can arise from m
ing the assumption of a constant coupling parameter. E
line plotted on this graph assumes a constantg2D , the
strength of which is chosen to agree with Eq.~15! at a certain
value of the chemical potentialm* . The figure shows tha
results obtained with a constantg2D(m* ) will introduce sys-
tematic errors whenm is significantly different fromm* . In
the Thomas-Fermi approximation the relative error incur
in a measurement ofN0 assuming a constantg2D(m* ) is
given by ln(m* /m)/ln(m̃ã2D

2 /8).

B. Vortex state solutions

The 2D GPE can also be solved for the case of a tw
dimensional condensate in a symmetric trap containin
vortex at the center by looking for solutions of the form

c~r!5f~ uru!eiku, ~30!

whereu is the angle around the vortex core, and the ph
wraps around by 2pk, wherek is an integer, as the range o
u is traversed. This adds an ‘‘effective potential’’ to the GP
and we now solve

2
\2

2m
¹2f~r!1

\2k2

2mr2 1Vtrap~r!f~r!

1N0g2D~m!uf~r !u2f~r!5mf~r!. ~31!

Solutions of these vortex states are shown in Fig. 4.
Such vortex states, which carry an angular moment

Lz5N\k, can be made energetically favorable by rotati

s
.

FIG. 4. Sample 2D GPE solutions for a vortex state withk
51 and for values ofm of 3, 5, 10, 15, and 20\v. f(r) is nor-
malized to unity, and populations given assume parameterv
52p3100 Hz, a2D56 nm.
7-8
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the trap with sufficiently high frequencyV. The energy func-
tional for a wave function in the nonrotating frame is

E@c#5E drF \2

2m
u“c~r!u21Vtrap~r!uc~r!u2

1
g2D~m!

2
uc~r!u4G . ~32!

The point at whichE@ck51#2VLz becomes less tha
E@ck50# is known as the thermodynamic critical frequenc
and this is plotted in Fig. 5 for both 2D and~genuine! 3D
condensates. The three-dimensional results were calcu
from solutions of the 3D GPE, given by Eq.~1!, with a3D
taken to be equal toa2D the scattering length used for the 2
results. Creation of a vortex in the center of the trap come
the cost of increasing the contributions from both the kine
energy and the trapping potential terms in the GPE, altho
the nonlinear contribution is reduced by virtue of a low
central density. Stronger nonlinear systems are, theref
more susceptible to vortex creation, and this becomes e
getically favorable at much lower frequencies in 2D than
3D for the same value of the scattering lengtha, as seen in
Fig. 5.

FIG. 5. The critical frequencyVc at which vortex formation
becomes energetically favorable in 2D~lower! and 3D ~upper!
gases as a function of condensate populationN0. Results obtained
usinga3D5a2D .
ys

h,

.
I

T.
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VII. DISCUSSION AND CONCLUSIONS

In this paper we have found expressions for the ma
body T matrix in a dilute Bose gas describing the collisio
occurring in a condensate in terms of the simpler two-bodT
matrix. We have shown that many-body effects of the co
densate mean field on such collisions may be incorporate
a shift in the effective interaction energy of a two-body co
lision, and that such an approach leads to the same re
obtained from renormalization-group techniques@1,2#.

The fundamental difference to the three-dimensional c
is that the first-order term in theT matrix in lower dimen-
sions is dependent not only on the scattering length, but
on the energies of the colliding particles. The coupling p
rameter in one and two dimensions is, therefore, depen
on the chemical potential of the condensate.

The energy dependent form of the many-bodyT matrix in
2D found here can be used to obtain a self-consistent f
for the 2D Gross-Pitaevskii equation. We have presen
sample solutions and have shown that the importance of
nonlinear term is magnified in 2D~as compared to the 3D
case! due to the size of the coupling constant in two dime
sions. The Thomas-Fermi approximation is, therefore, va
at a much lower number of atoms than in the 3D case,
proximately an order of magnitude lower in the case cons
ered here. The critical frequency of vortex formation is a
found to decrease with condensate occupation much fast
2D than in 3D, and so vortices should be comparativ
easier to form in 2D.
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