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Energy-dependent scattering and the Gross-Pitaevskii equation
in two-dimensional Bose-Einstein condensates
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We consider many-body effects on particle scattering in one-, two-, and three-dimer{8idnBlose gases.
We show that aT =0 these effects can be modeled by the simpler two-Bothatrix evaluated off the energy
shell. This is important in 1D and 2D because the two-bbdyatrix vanishes at zero energy and so mean-field
effects on particle energies must be taken into account to obtain a self-consistent treatment of low-energy
collisions. Using the off-shell two-body matrix we obtain the energy and density dependence of the effective
interaction in 1D and 2D and the appropriate Gross-Pitaevskii equations for these dimensions. Our results
provide an alternative derivation of those of Kolomeisky and co-workers. We present numerical solutions of
the Gross-Pitaevskii equation for a 2D condensate of hard-sphere bosons in a trap. We find that the interaction
strength is much greater in 2D than for a 3D gas with the same hard-sphere radius. The Thomas-Fermi regime
is, therefore, approached at lower condensate populations and the energy required to create vortices is lowered
compared to the 3D case.
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[. INTRODUCTION contrast with three-dimensional gases.
The energy dependence of the effective interaction can be
Recent experiments on the quasicondensation of a twoaritten as a density dependence, in which form the results

dimensional gas of atomic hydrogg®] and the possibilities can be applied to trapped gases. This leads to a Gross-
of confining dilute atomic gases in “low-dimensional” traps Pitaevskii equatiofGPE describing the condensate wave
[4,5] have stimulated interest in the possibilities of Bose-function that no longer has a cubic non-linearity 4n but
Einstein condensation in two-dimensional systems. It ha§stead goes aBy|*y in 1D and as [¢|*/In[¢f)y in 2D.
long been known that, in the thermodynamic limit, Bose con-Such a modified GPE has already been introduced by Ko-
densation is not possible in two-dimensional homogeneou@me'SKY[Lz] and anatg[lS], using arguments based ei-
systems at any finite temperature because long wavelengﬂqer on the renormalization group or a Kohn-Sham density-

fluctuations destroy long-range coherefi§g Instead such a unctional approaqtﬁlG]. Our discussion in this paper s to
system undergoes a Kosterlitz-Thouless transtirand ac- show how essentially the same results can be obtained by a

. : consideration of many-body effects on particle scattering and
quires local coherence properties over a length scale depefi- :

. . ) o relate this to well-understood treatments of the 3D Bose
dent on the temperature—a “quasicondensdi®]. In the

limit T—0 alobal coherence is achieved in homodeneous 2 as. Indeed, substantially the same treatment as used in 3D
_ .

systems ar?d a true condensate then exists. In g trapped plied to Fhe -1D and_ 2D gases Ie_ad_s N the eneray depen-
Yy : Pp nt effective interactions. The principle difference is that

system the modifications of the density of states caused by,ose effects must be taken into account in leading order,
the confining potential enable a true condensate to exist ev&phereas in 3D they can be neglected in the simplest treat-

at finite temperaturef9]. . ments and only become important at finite temperature or
In most treatments of a Bose condensed gas in 3D, pakigh density.
ticle interactions are described bydafunction contact po- In the following section we discuss the Gross-Pitaevskii

tential whose strength is determined by the zero energy angquation, and the limits in which a system may be considered
momentum limit of the two-bodyl matrix (T, that de- two dimensional. In Sec. Il we then derive the many-body
scribes scattering in a vacuum. This leads to the standarefffective interaction for low-dimensional gases, before con-
form of the interaction potential (##2%asp/m)é(r), where sidering its implications for 1D gases in Sec. IV. Finally,
asp is thes-wave scattering length. At higher order it can be using this effective interaction we obtain a form of the two-
shown that the interactions are actually described by a manydimensional Gross-Pitaevskii equation, and we present the
body T matrix (Tyg) [10—12 which accounts for the fact results of numerical solutions for both ground and vortex
that collisions occur in the presence of the condensate rathatates in Sec. VI.

than in free space. In 2D this correction is critical because
the 2D two-bodyT matrix vanishes in the zero energy limit
[2,13], and thus we must include this correcti¢at least
partially) even at leading ordé¢d.4]. In this paper we develop
an expression for the many-bodymatrix in terms of the The macroscopic wave function for a Bose-Einstein con-
two-body T matrix evaluated at a shifted effective interaction densatgBEC) is found in mean-field theory using a nonlin-
energy. In one and two dimensions we obtain an effectiveear Schrdinger equation known as the Gross-Pitaevskii
interaction that depends on the energy of the collision, irequation—where the nonlinear term arises from interactions

Il. THE GROSS-PITAEVSKII EQUATION IN 2D
AND QUASI-2D
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between the atoms of the condensate. Obtaining the form dfere refers to the three-dimensional nature of the interactions

the effective interaction in 2D, and describing its effect onwhilst the prime indicates thag;p is a two-dimensional

the solutions of this equation are the main concerns of thiguantity.

paper. The above factorization of the wave function remains

Currently, most BEC experiments have created threevalid asl, is decreased further, but the assumption that the

dimensional condensates, which are described by a GPE gtattering is unaffected begins to break down wheis not

the form much greater thamsn. The effect of the confinement on

particle interactions has been discussed in detail by Petrov
2 2 _ and Shlyapniko\f17,18, who found that a 2D contact po-

“om " P Vied DY) + NoGaol ¢(1)[*4(r) = mi(r), tential can still be used but that the strength of the interaction

(1) becomes dependent upon the confinement. The coupling pa-
rameter that they obtained in this “quasi-2D” regime is

1 N M, 1/2| Bfw,
asp |\ 27k 2u

2

where Vi, (r) is the external trapping potentidl, is the

condensate populatiop, the chemical potential, angsp is B

the coupling parameter describing the effective interactions. Yq20~

The coupling parameter is generally taken to be the zero

energy and momentum limit of the two-bodymatrix thatin ~ where B~0.915. This expression is valid when the condi-

3D is a nonzero constagkp=4m#h2%azp/m, wherea is the  tions mgéZJZWﬁz,Re/|Z,2,LL/ﬁa)Z<1 are satisfied. In the

s-wave scattering length. Thematrix has the contact poten- |argel, limit the 1/a;p term dominates and the scattering is

tial form To(r,r")=g3pd(r—r") 8(r) in the limit that all the  three-dimensional as considered above. However in the fully

momenta involved in typical collisions are much less than2D limit the logarithmic term in Eq(4) dominates and

1/R., whereR, is the range of the actual interatomic poten- becomes dependent uppn Equation(4) was derived from

tial (which is not in general equal to the scattering ler@th  solving the two-body scattering problem within the potential
The obvious extension of these experiments in order t@ausing the tighz confinement. We will now show how es-

achieve the goal of two-dimensional condensates is to corsentially the same result can be obtained in the fully 2D limit

fine a gas in an anisotropic trap such that the gas is tightlyyy a consideration of the many-body effects on particle scat-

confined in thez direction. For a harmonic potential such a tering.

trap _has the formVy,{r)=mw?/2(p?+2z%/y), with I,

=\h/2mw, as the characteristic trap length in the tightly . THE T MATRIX IN THE GPE

confined direction, where,= w/y2. On decreasing, (de- _ _ _ .

creasingy) the system will pass from being three dimen- _In order to describe the interactions within a truly 2D

sional to being two dimensional in a variety of senses. ~ BEC we must consider 2D scattering in the presence of a
The system can first be called two dimensional dpdeas ~ condensate. This is described by a many-bbayatrix Tyg ,

merely been decreased sufficiently that the mean-field energgnd the coupling parameter that appears in the GPE is in fact

of the condensate is small comparedie, . In this case the given by the matrix elemerik’|Tyg(E)|k) evaluated in the

dynamics of the system in thedimension are restricted to limit of zero momentum and energkk’,K,E=0). Note

zero-point oscillations. Nonethelessl jfis still much greater ~that the many-bod§ matrix is, in principle, also a function

thanagp, then two body collisions are hardly affected, and©f the center-of-mass momentufy but this will not be ex-

hence interactions can still be described by the threePliCitly indicated in this paper for notational simplicity. This

dimensional contact potentiasp. Therefore, although in will not be important for the rgsults presented since we will

this case the third dimension can be factored out of the dylways take the limiK =0 in this paper.

namics of the system, at short length scales the interactions, Before discussing the many-bodymatrix, however, we

are still three dimensional. This regime can be described ug¥ill first consider the simpler two-body matrix that de-

ing the 3D GPE of Eq(1) with the assumption that the wave Scribes collisions between two particles in a vacuum and for

1/2 -1

(4

8mw,h’

m

function can be factorized as which analytical expressions exist9] . We will then show
how the many-bodyl matrix can be obtained from the two-
v B Mo, |4 mo, , X body version in the limit appropriate for the study of BEC.
A. The two-body T matrix
Substituting into the 3D GPE, and integrating ozéeads to The two-bodyT matrix describing scattering from an in-
a two-dimensional equation terparticle potentiaM(r) is the solution to the Lippmann-
52 1 Schwinger equatiof20]
— 5 Voup)+ 5ma?pd(p) +9' Noly(p) i p) _
(K [T E)|k)=(K'|V(r1=ro) k) + 2 (k' [V(r1—r5)|a)
=un' ¥(p), ©) !

where p={x,y}, u'=u—Hfw,/2, and the coupling param-

= (AlT2E)[K), (5)
eterg’ is given bygip=(Mw,/27%)*?g;5. The subscript E—(ekosqt ek
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wherek andk’ are the relative momenta of the two particlesin the Bogoliubov approximatiof21] for the case of the
before and after the collision respectively, akdis the hard-sphere gas. The corrections included in this many-body
center-of-mass momentum. The energy of a single-particld matrix over the two-body version are the occurrence of
state ise”, where in the homogeneous limsifP=#2k?/2m. quasiparticle rather than particle energies for the intermedi-

L = . . ate states, and the Bose enhancement of scattering into these
The total energy of the collision i& and includes a contri-

bution from the center-of-mass momentunthat cancels ?;i:gfsr;r h:ﬁ lEa;te(%?ﬁeCt resilts in the presence of population
the corresponding contribution from the single-particle ener- Formglly thi.s rﬁany—bodyT matrix is included in the

gies. The two-body matrix is, therefore, independent K, theory of a Bose condensed gas by considering the effect of

as it must be in free space. A
The scattering event described here could be a single inthe so-called anomalous averagga) on the condensate

teraction (k’|V|k), or alternatively the particles may first €volution, wheres; is the noncondensate annihilation opera-
make a transition to an intermediate stage (weighted by tor _for stat_el. This term oceurs whenA_ teArins in the l—!amﬂ-

an energy dependent denominatbefore interacting again tonian of higher than quadratic orderacﬂ_,ai are taken into

to emerge in statkk’). The recursive nature of E¢5) sums account{10,29. We note that a generalization of the many-
all possible processes for whi¢k)—|k’). For many appli- body T matrix that includes quasiparticle propagator factors
cations we only need the “on-shell’ matrix where both the Of the intermediate states has been propdddd but the

energy and momentum conservation laws are fulfilled. HOW_cprrectlons this includes over and above Eg).are of still
E . plgher order.
ever, it is also useful to consider the more general off-shel

We note that the energies, andE in Tyg are measured
;?L?:;?;‘:/\’legsve’ where the momenta and energy may tal?eelative to the condensate, whereas the single-particle ener-

: be sh hat. for i . ials of a fini gies inT,, are measured relative to the energy of a stationary
t can be shown that, for interaction potentials of a Irllteparticle. This means that for collisions between patrticles in
rangeRe, the T matrix is independent of the incoming and e condensate we take the lirft= 0 in Tug, Which corre-

o oo Ao e 22N 2~ 2 hen messure e 1o he seme zero o
POS P . P : energy as the two-body ca$é0]. For collisions between
action that is proportional té(r,—r,). This contact poten-

. . . . 2l X condensate atoms, we also take the zero-momentum limit
tial approximation is of great utility in solving the GPE | |/ « — 0 Interactions between two condensate atoms are,

Wher(=T the zero-momentum limit of the matrix is uged 0 therefore, described by the matrix elemé@itTy(0)|0).
describe particle interactions. In the three-dimensional case

the T matrix elements at low energy and momenta are also C. Tyg in terms of T,y, a simple argument
independent of energy, leading to a constant coupling param-

eter in the GPE with forngap=4m#2azs/m in Eq. (1). The Lippmann-Schwinger equation for the many-bddy

) S msbi = matrix is substantially more difficult to solve than the two-

The contact potential approximation is still valid in one 1,4 equivalent due to the presence of quasiparticle energies
and two dimensions, but the matrix at leading order now 54" populations. In the limit of zero temperature we will
depends upon the. energy of the coII|S|on_, as will bg shown igpow that the many-body matrix can be approximated by
the following sections. Thus the scattering terms in the 2Dy off-shell two-bodyT matrix evaluated at a negative en-
GPE will be quite different from the three-dimensional caseergy. To see this we consider E@) for the matrix element
(0|Tyg(0)|0) at T=0 where the population terms vanish.
Upon comparison with Eq5) it can be seen that the only
difference between the equations for the two type¥ aia-

The two-bodyT matrix describes collisions; vacuoin  trix occurs in the energy denominators. Specifically, the qua-
which the intermediate states are single particle in naturesiparticle energy spectrum appears in the many-body case,
However, in a Bose condensed gas collisions occur in thevhereas the single-particle spectrum appears in the two-body
presence of a condensate and a many-b@dyatrix is  case. Heuristically, if the dominant contribution to the inter-
needed to describe scattering processes. This is defined Bjediate states in a collision comes from states with energies
the equation of order u or higher, we can proceed by replaciag by

eg"+ . This is the high-energy limit of the Bogoliubov

, , , spectrum of Eq(7) and it contains a constant shift from the
(K'[Twe(B)[k)=(k |V(r1—r2)|k)+% (K'[V(ri=ra)la) siF;lgIe-particleqspectrum due to the mean-field effects of the

condensate that do not vanish in the relevant momentum
(1+ Nk qF Nk—g) range k~k, for a contact potential interactiorfwhere
E—(exiz+qt Ekiz—q) (alTus(E)[K), hszIZmE,u). We are interested in the many-bodymatrix
atE=0, and thus the energy denominator in E&).becomes

B. The many-body T matrix

(6)
1 1
whereE is the interaction energy, ang, is the energy of a 0—(ek/orqt eki—q) 0— (e, o+ u+edy o+ )
guasiparticle state of momentugyn which is given by 4 -
1
spy2 sp,, 11/2 = sp sp ' (8)
ep=[(ep) T2, ] (7) —2pu—(egpiqt ekiz—g)
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Comparison with Eq(5) for the two-bodyT matrix shows
that in this approximation

<O|TMB(0)|O>:<O|T2b(_2#)|0>- ©)
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sult given by our heuristic argument above. In the following
section we will use a more rigorous argument and find that
this leads to somewhat better values for the effective inter-
action energy.

Interestingly, this shows that the effective two-body interac-

tion energy is negative, meaning that the interaction strength

is always real. We will see that this is important in the 1D
case in the following section. In 3D the two-bodlynatrix is
independent of energy to first order, but in both one and tw

fore, the effective interaction energy becomes important i
these lower dimensions.

At first glance the result of Eq9) may appear counterin-
tuitive since the energy of a collision between two conden
sate particles might be thought to b2, and certainly not
negative. However, as we have shown, the many-body e
fects in the system lead to a shift in the quasiparticle energ
spectrum and it is this that leads to a shifted effective energ
entering the two-bodyT matrix. Stoof and co-workers
[22,23 have also proposed that interactions in low-

h
dimensions it has a nontrivial energy dependence and, therde[—

i

D. Tyg in terms of T,,, a better argument

Having shown heuristically in the preceding section that
e many-bodyl matrix can be approximated by a two-body
matrix evaluated at a negative energy, we will now present
more formal justification. This will lead to a slight modifi-
cation to the magnitude of the energy used in the two-bbdy
matrix, but the essential physics of the argument is un-
changed.

From Egs.(5) and(6), it is possible to derive an expres-

1§ion for the many-body{ matrix solely in terms of the two-

)l)ody T matrix [10]

y <k'|TMB<E>|k>=<k’ITZb(E)lI<>+<k’|TcmeE>|k>.(l

dimensional condensates can be described by the two-body

matrix evaluated at a negative energyZu), the same re-

where

<k,|Tcorr(Er_)|k>= 2

gq#0

If we now assume that there is a valueB# E* for which
(K'|Tya(E) k)= (k| T,(E)|K), we can replacdyg(E) on
the right-hand side of Eq11) by T,,(E*). The value ofE*
may then be found by solving fofk’| Tcor(E,E*)|k)=0.

(K'|Too(E)|a)(1+ Nk 2+ Nkr2—g) (Al Tws(E) k) Y (K'[To(E)|ay(al Twa(E)|K)
E—(ekprqteknr—q '

(11)

E_(SP sp
q E—(exi+qT &Ki2-q)

be dealt with in Sec. IV where we show that the results
obtained are consistent with known exact results. Prior to
that however, we derive in the following section the form of
the many-bodyl matrix in two dimensions and show that the
effective interaction energy becomes important in this case.

We again take the limit of zero temperature, such that

Nk/2+q.Nk2—q @re zero, and for collisions between two at-
oms in the condensate we take the likjk’,K,E=0. The

value of E* is then given inD dimensions by the solution to

©

3 k(D_l)

)

Substituting the Bogoliubov dispersion relationship for the
quasiparticle energies using E@) and carrying_out the in-

tegrals in Eq(12) we can obtain expressions f&* . We are

k(P-1)
k_f e
0 E* —#2k?/m

0 dk. (12

_28k

then able to express the coupling parameter that occurs in the

GPE in terms of the two-bodyf matrix evaluated at the
energiesE*. In two and three dimensions this leads to

<0|T2b(_,u)|0>

16 .
<0|sz< - pﬂ«)l@ n 30.
13

in 2D,
g=(0|Ty\g(0)|0)=

E. The many-body T matrix in two dimensions

We consider the case of a 2D Bose gas with an inter-
atomic potentiaV(p) that is short range, parameterized by a
lengtha,p, and which admits no bound states. Specifically,
we consider the case of a “hard-disk” potential such that
V(p)=c for |p|<a,p and V(p)=0 otherwise. In recent
work [19] we have derived a full expression for the two-body
T matrix for this potential in the general off-shell case. In the
limit ka,p,k’a,p<<1 the result is

47h%Im
i —2yem— IN(Em&,/8#2)

(k' To(E)| k)= (14)

whereygy, is the Euler-Mascheroni constant. The corrections
are of order kayp)? and (Kga,p)?/In(kgayp) or greater,
wherekZ=Em/42. This result agrees with the work of Stoof
[24], and also in the half-on-shell limit with the earlier work
of Schick[14] and Bloom[25]. It is also of the same form as

However, in 1D the situation is more complicated becausehe results obtained by Fisher and Hohenlé] who con-

the first integral is logarithmically divergent. This case will

sidered the case of a Gaussian interatomic potential, imply-

043617-4



ENERGY-DEPENDENT SCATTERING AND THE GROSS. . PHYSICAL REVIEW A 65 043617

ing that the result is general for most short-range repulsive 10
potentials that may be parameterized by a lerzgth In this
low-momentum limit theT matrix is independent of botk
andk’ and thus it is still represented in position space by a
S-function effective interaction potential. The new feature
compared to the 3D case is that fhenatrix now depends on
energy and, in particular, it vanishests- 0. It is, therefore,
crucial to take into account the many-body shift in the effec-
tive collision energy of two condensate atoms. This is now a

—_

¢ (arb. units)

self-consistent problem as many-body effects give rise to a 0.1

nonzero coupling constant. In 3D the two-bo@ymatrix is 1 . 10

non-zero aE—0 and many-body effects can, therefore, be +/asa

neglected at leading order for dilute gases. FIG. 1. Log-log graph of the effective 2D interparticle interac-

From Egs.(13) and (14) the many-bodyT matrix, and,  tion strength as a function of confinement in the third dimension.
therefore, the coupling parameter, in 2D is found to be The solid line showsy,, that describes scattering in quasi-2D

gases, taken from Refl18]. Our results forg,p derived in this
Ah? 1 paper are consistent with this result and were derived for the region
) f validity shown. The dashed line show$, that is the expected
m 2 2 or b
In(uma;p/4h ) 15 limit at largel,/azp.

920=(0|Ton( —w)|0)=—

P IV. THE MANY-BODY T MATRIX IN ONE DIMENSION
where terms of order ﬂJh(,umagDMﬁ )]° or greater have

been neglected. Note that the evaluation of the two-bbdy ~ Before we use the result in the preceding section to solve

matrix at a negative energy means that the imaginary corthe two-dimensional GPE, we briefly consider the one-

ponent in Eq(14) vanishes, and thus the many-boflyna-  dimensional case. Our discussion in this section is not in-

trix is real. tended to be rigorous, but is meant instead to demonstrate the
The parameter that appears in this description of the inimportance of including many-body effects, via the many-

terparticle interactions is the two-dimensional scattering?ody T matrix, when considering the properties of a Bose gas

length a,p, analogous to the 3B-wave scattering length In low dimensions.

asp that parametrizes three-dimensional collisions in cold A one-dimensional condensate is described by the Gross-

dilute gases. Reliable values afp have been obtained in Pitaevskii equation

3D by experimental measurements, and potenteljycould

be measured in this manner. However, in their work on 42

quasi-2D scattering processes Petrov and Shlyapriik6y — %Vzw(x)+vtrap(x) (%) +NoG1p| 0| 2¢(X) = (%),

also derived an expression for this parameter in terms of the (17)

three dimensiona;p, and the confinement of the trap in the

tight directionl,,
‘ whereg;p is the one-dimensional coupling parameter. The

use of the GPE necessarily assumes the existence of a con-
a,p="4 \/Elzex% _ \/;I_Z) (16) densate, which in one dimension implies that the system
asp must be confined in a trap and, therefore, of a finite size. In
a homogeneous 1D system a true condensate may not exist
whereB~0.915. Using this expression far,p in Eq. (15) in the thermodynamic limit due to the density of states
we obtain the quasi-2D coupling parameter of Petrov and6,26]. With this caveat in mind we will use the 1D case to
Shlyapnikov given in Eq(4), and our approach, therefore, illustrate the importance of the energy dependence of the
agrees with their results in the genuine 2D limit that is ap-many-bodyT matrix. Specifically we will consider the one-
propriate forl ,<asp. dimensional analogue of a hard-sphere gas for which exact
Using this expression we are able to compare the strengﬂfesuhs exist. This gas has an interatomic potential of the
of the 2D and quasi-2D coupling parameters with the paramform
eter for quasi-2D gases with 3D scatterigg, described in
Sec. Il. These quantities are displayed as a function of trap 0 for |x|>ayp,
width in thez dimension in Fig. 1. It can easily be seen that V(X)= (18
the size of coupling parameter appearing in the GPE for the = for |x|<ap.
genuine 2D case is over an order of magnitude greater than
in the case where the scattering is essentially 3D in nature In a recent papefl9] we have used an inhomogeneous
(I,/azp>1). The magnitude of,p decreases slowly dsis  Schralinger equation to obtain results for the general off-
decreased beyond azp/2 (not shown on the graptdue to  shell two-bodyT matrix for hard-sphere gases in one, two,
the size ofa,p determined from Eq(16), and it matches the and three dimensions. In one dimension in the limit of zero
3D scattering limit forl ,/azp=10. momenta the result is
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4ACH?
m

2

el

i Ea1D+Ea§D) for E>0, M1p=NoY1p= ng. (22)

(0T24(E)[0)= 2 [ 4 This form differs from that found in 3D whergong be-
a \/—E\/an—EaiD for E<0.  cause of the dependence @f, on the chemical potential.
This result can also be explained heuristically, as the extra
(19 curvature introduced into the wave function by the presence
of the other atoms. If we consider a many-body wave func-
As in the two-dimensional case, tiiematrix is dependent on tion that scatters off a hard-sphere potential of rangg,
the collision energy even at lowest order, and so the shift tehen in the limit of zero energy, we need to so&y/dx?
an effective interaction energy predicted in Sec. Ill C due to=0. We impose the boundary conditions thtx)=0 atx
many-body effects is again important. Furthermore, in the=a, and(x) approaches an asymptotic valyet largex.
case thaEa3<1, the leading-order term in tiEmatrix i Since ¢ is a many particle wave function, the distance at
1D is imaginary ifE is positive. The shift to anegative  which it must arrive at its asymptotic value will be of the
effective interaction energy is, therefore, critical in this one-order of the interparticle spacirlg. This gives a solution to
dimensional case. the scattering problem of
In order to obtain the many-bodymatrix in terms of this
two-body T matrix we must solve Eq12). As noted earlier _
the first integral in this equation is logarithmically divergent P(x)= |0—a1D(X_a1D)
in 1D. Physically this arises from the fact that a true conden-
sate does not exist in a homogeneous 1D system. Instead dhe extra energy caused by the curvature of the wave func-
a single quantum level with a macroscopic occupafias tion in this region is then
occurs in a true condensatén 1D there is a band of low- ) )
' A2 (1o 12 x|?
energy levels that all have large occupations. The same __f |V ()| 2dx~ — (24)
methods as discussed above may still be used in the 1D case, 2mJ, 2mly °
however, provided that we now define the “condensate” as a
band of levels in momentum space up to a cutofkgj,, And sincel o= 1/ny and|x|>=n, we have that the interpar-
such that the 1D “condensate denSiwsEzki<kmaxni satis- ticle interactions make a contribution to the energy that
fies ng~n (as for a true condensatdJsing this definition, ~Scales asig. The same result may be derived from an even
the lower limit of the first integral in E¢(12) should then be ~Simpler argument that considers each particle to be confined
kmax and the divergence is removed. This approach is justiln an infinite square well of lengthk 1/n by its nearest neigh-
fied for a confined 1D system since we may assume thgors. )
existence of a condensate due to the modification to the den- The exact result fow in such a 1D gas has long been
sity of states that also removes the divergence. known. In solving the system of 1D interacting bosons by
A reasonable value fok,,, may be obtained from the dempnstratl_ng equivalence with a gas of 1D noninteracting
momentum distribution for a system of impenetrable bosonsfermions, Girardea(i28] showed that in the strong coupling
Such a distribution is discussed in RE27]. We will define limit (appropriate to the hard-sphere potential considered
Kmax Dy the criterion thatN(k>Kg)<1, which givesk,,  apPove
~0.257ng [27]. Using this as the cutoff in Eq12), a solu- o2 52
tion may be found forE* by making the ansatz thdE* w=———n2 (25
=—Cu, whereC is a constant. For the hard-sphere case 2 m
considered here the ansatz is satisfied w@és the solution

for a;p<x=ly,. (23

Our result, therefore, shows the correct dependenc® on

to but disagrees on the numerical factor. The disagreement is
5 5 due to the fact that, as previously mentioned, in a homoge-

tanh 1 _ 77_' (20) neous 1D system there can never be a true Bose condensate,
J(0.257)%/4C+ 4 C so significant corrections to the GPE can be expected. The

additional uncertainty in the choice &f,,, also introduces a
This can be solved numerically to giv@~3.4. The expres- source for discrepancy in the numerical factor. However, the
sion for the many-bodyl matrix in 1D to leading order is agreement with the dependence whindicates that the en-

then ergy dependent many-bodymatrix appears to deal with the
interactions correctly. This is interesting because it means
910=(0| T, — Cu)|0) = 4CAZu/m. (21)  that an intrinsically many-body effect, namely, particle con-

finement by neighbors, can be modeled by an off-shell two-

We now consider a homogeneous 1D Bose gas, using theody T matrix evaluated at a shifted effective interaction
above definition of the condensate. When this system is imnergy, which is the essential argument of this paper. This
the ground state the contributions in the GPE from the cursuggests that the method will have at least qualitatively the
vature of the wave function and the trapping potential bothcorrect density dependence in the strong coupling limit. A
vanish, and, therefore, more detailed investigation of this approach in the 1D case

043617-6



ENERGY-DEPENDENT SCATTERING AND THE GROSS. . PHYSICAL REVIEW A 65 043617

will be the subject of a further paper. Although our discus-given u by propagating the time-dependent GPE forward in
sion in this section has been qualitative due to the lack of @amaginary time from an initial approximate solution to obtain
true condensate in a 1D homogeneous system even at zepoth the ground-state wave function and the nonlinearity
temperature, in a trapped 1D system it is possible for a trug,pNy. As mentioned in the preceding section the coupling
condensate to form. We expect, therefore, that semiquantitasarameter in two dimensions in a trap is spatially dependent,
tive results outside the normal BEC regime of validity can behaving a logarithmic dependency on the density. However,
achieved using this method. In two dimensions a true consince in two dimensions the spatial dependence is merely
densate can be formed, even in a homogeneous system, lagarithmic it will have little effect on the solutions of the
T=0 and so we expect our 2D results in this paper to beGPE, except at the very edges of the trap where the wave

quantitatively correct. function vanishes. We, therefore, use the homogeneous sys-
tem coupling parameter of EGL5), which will illustrate the
V. SCATTERING IN INHOMOGENEOUS GASES features of most interest.

Using the expression for the 2D coupling parameter found

In the previous two sections we presented expressions fgp, Eq. (15) we solve the two-dimensional time-independent

the many-bodyl’ matrix in one and two dimensions in terms Goss-Ppitaevskii equation for a 2D Bose condensate in a trap
of the two-bodyT matrix evaluated at shifted effective inter- \yith Viad(P) = ¥Mw?p?. We can make the GPE dimension-

action energies. However, the results obtained are strictlyygg scaling all energies byw and all lengths byl,
only valid for homogeneous systems since we have not ac-. /—f;/ m ivin

counted for any modifications of the scattering wave func- (2ma), giving
tions due to the presence of a confining potential. We con- <2, ~ . &~ ,/~ NG ~N2 TN T
sider here the case of a gas confined tightly in one or two VE(p) + Mhrad ) () + NoGao( i) | () [*4(p) = (),

dimensions(in order to reduce the dimensionality, as dis- (28)
cussed in Sec. Jland weakly in the remaining dimensions on WhereEZD(,ﬂ) _ —8w/In(ﬁ5§D/8) and vtrap(”[‘)) _ 711;)2_ Note
a length scalé,,.
Provided that the range of the interatomic poterialis
ller th h h i ill locall ! L : .
hmouniggserggoﬁrs ;r?; 3\72 L;nnr;p?as;%t:rrénﬁ g:l:lcu?seinoézg fore, the interaction is repulswe_. As shown ea_lrher, for the
(15) and(21) by the homogeneous expressiar- nog. This range ofu andNg that~we ~consm.jer -here, we find that Eqg.
is a form of local-density approximation and, as the density(15) leads to a value fog,p(u) which is more than an order
of an inhomogeneous gas is spatially dependent, this leads & magnitude greater than the equivalent value for a

spatially dependent coupling parameters. Recognizing th&tuasi-2D gas in which the particle interactions are effectively
no(r) =No|#(r)|? the coupling parameters in one and two 3D in nature. Thus the nonlinear term in the GPE is more

that the quantityua, is small compared to unityor the
earlier expansion of th& matrix elements failsand, there-

dimensions are significant in two dimensions than in the 3D case.
4Cﬁ2No A. Ground-state solutions
ng:T|‘//(X)|2, (26) . .
Figure 2 presents sample solutions for the ground state of
2 a 2D BEC in a trap for differing values ¢f. To illustrate the
Oop= — p- [In(Ng| ,j,(p)|2a§D)]*1 physical quantities involved we give number; foragasina
trap of w=27X100 Hz and with a scattering parameter
In[In(n a2 )] given bya,p=6 nm. This is close to the 3Bwave scatter-
0 #) (27)  ing lengthagp found for 8"Rb, and, therefore, from Eq16)
In(noagD) this corresponds to a situation whére-azp. We see that at

_ ) low Ny the solution is approximately the Gaussian wave
These results agree with the work of Kolomeisky and cofynction that is expected for the noninteracting case. At

workers[1,2] who obtained similar expressions based on higher N, the Thomas-Fermi approximation found by ne-

re'normalization-group analysis. Such density dependent Coiecting the contribution to the GPE from the kinetic energy
pling parameters are also expected from the results dferm as compared to the interaction and trapping terms is
density-functional theory16] that predict that the energy of expected to be a good description. In two dimensions the

the system is a functional of the density only. The samernomas-Fermi approximation gives a density profile in the
results may be obtained from mean-field theory by incorpoform of an inverted parabola

rating the spatially dependent anomalous avel(égiq) into .
the system of equations governing a condensate and solving. ~ .,  In(@ay/8) - - . _  _
self-consistently 29]. |(p)rel*=— TNBa [4—=Viad p)10( e —Viadp)),
leX
(29

VI. 2D SOLUTIONS OF THE NONLINEAR SCHRO DINGER . . . .
EQUATION where 6(x) is the step function. At higheX, the solutions
shown are generally very well approximated by the Thomas-
In this section we present solutions of the GPE for aFermiform, except at the boundary region of the condensate.

trapped two-dimensional gas. The solutions are found for &ndeed we find that the Thomas-Fermi approximation works
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0.3 0.25
0.2
0.2
—_ _0.15
S >
® * 04
0.1
0.05
(a)
0 0
0 5 10 15 20 0 5 10 15 20
p (units of I,) p (units of {)

0.06 FIG. 4. Sample 2D GPE solutions for a vortex state with
=1 and for values ofx of 3, 5, 10, 15, and 20w. ¢(p) is nor-
malized to unity, and populations given assume parameaters

0.04 =27X100 Hz,a,p=6 nm.

<
= Fermi approximation for the number of condensate atoms is

0.02 No=— u? In(uma/4%2)/(2hw)? and is found to be in

agreement with the numerical results to within one percent
A (b) onceNy was greater than 300.
% 5 10 18 20 In some previous papef80] the GPE has been solved

with g,p approximated by an energy independent constant.
This is appropriate to the case where the scattering is three
FIG. 2. (a) Ground-state 2D GPE solutions in an axisymmetric dimensional, but not to the fully 2D case wheyg, depends
trap for w=2, 10, 20, 30, 40, and %@. ¢(p) is normalized to  on u. We find here that the interaction strength given by Eq.
unity, and populations given assume parametars=2m (15) increases by about 50% asrises from Ziw to 50t w.
%100 Hz, a,p=6 nm. (b) Comparison of GPE solution for. ~ Figure 3 shows the possible errors that can arise from mak-
=50 (solid line) with Thomas-Fermi approximatiof@ashed ling ing the assumption of a constant coupling parameter. Each
line plotted on this graph assumes a constgpt, the
well for the 2D case, due to the high strength of the scatterstrength of which is chosen to agree with Ebp) at a certain
ing, as expected from the dimensionless GRB). For the value of the chemical potential, . The figure shows that
nonlinear term to dominate the kinetic-energy term requiresesults obtained with a constaggp(u, ) will introduce sys-
that N2P> —In(ua3,/8) (where u~10-100), while in the tematic errors whep is significantly different fromu, . In
three-dimensional case we reqUM§D>153D. Putting typi- the Thomas-Fermi approximation the relative error incurred

cal numbers into this using our parameters weNgt> 10, n a measurement cﬂ(’z assuming a constagzp(uy) IS
while N3P>100, and thus the Thomas-Fermi regime is9'Ve" by I, /m)/in(uazo/8).

reached in 2D with about an order of magnitude fewer atoms

than is the case for 3D. As confirmation of this, the Thomas- B. Vortex state solutions

The 2D GPE can also be solved for the case of a two-
dimensional condensate in a symmetric trap containing a
vortex at the center by looking for solutions of the form

¥(p)=o(|p|)e'"~, (30

p (units of I,)

where 6 is the angle around the vortex core, and the phase
wraps around by Z«, wherex is an integer, as the range of

0 is traversed. This adds an “effective potential” to the GPE
and we now solve

10_3N0

6
5
4|
3
2

0 10 20 30 40 50 %2 52,2
o (units of hw) — ﬁvz(ﬁ(p)*' W +Vtrap(P)¢(P)

FIG. 3. Ng vs u for a 2D Bose gas. The dots represent solutions
of the GPE with the full energy dependent interaction given in Eq. +NoG20( )| &(1)[*h(p) = wb(p).
(15). The lines are results which assume a congtiadependent of
w) coupling parameteg,. The three constant values gfp, cor-  Solutions of these vortex states are shown in Fig. 4.
respond to Eq(15) evaluated aju equal to Giw (dotted, 25w Such vortex states, which carry an angular momentum
(dasheg, and 5@ » (solid). L,=Nf7«, can be made energetically favorable by rotating

(31)
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1 VII. DISCUSSION AND CONCLUSIONS
0.8 In this paper we have found expressions for the many-
5 body T matrix in a dilute Bose gas describing the collisions
5 0.6 occurring in a condensate in terms of the simpler two-bddy
.*2 matrix. We have shown that many-body effects of the con-
204 densate mean field on such collisions may be incorporated by
S a shift in the effective interaction energy of a two-body col-
0.2 -
lision, and that such an approach leads to the same results
0 obtained from renormalization-group techniqyi&<?].
6 2 4 6 8 10 12 The fundamental difference to the three-dimensional case

-3
107" No is that the first-order term in th& matrix in lower dimen-

FIG. 5. The critical frequency. at which vortex formation ~ Sions is dependent not only on the scattering length, but also
becomes energetically favorable in 2@bwen and 3D (uppe)  On the energies of the colliding particles. The coupling pa-
gases as a function of condensate populabgnResults obtained rameter in one and two dimensions is, therefore, dependent
usingasp=asp. on the chemical potential of the condensate.

The energy dependent form of the many-bddmyatrix in
the trap with sufficiently high frequendy. The energy func-  2p found here can be used to obtain a self-consistent form

tional for a wave function in the nonrotating frame is for the 2D Gross-Pitaevskii equation. We have presented
52 sample solutions and have shown that the importance of the
E[lﬂ]:f dp 2—|V¢(P)|2+Vtrap(P)|¢(P)|2 nonlinear term is magnified in 2as compared to the 3D
m case due to the size of the coupling constant in two dimen-

) sions. The Thomas-Fermi approximation is, therefore, valid
5 |<//(p)|4}. (32 at a much lower number of atoms than in the 3D case, ap-
proximately an order of magnitude lower in the case consid-

The point at whichE[,_,]—QL, becomes less than €red here. The critical frequency of vortex formation is also

E[¢._o] is known as the thermodynamic critical frequency, found to decrease with condensate occupation much faster in

and this is plotted in Fig. 5 for both 2D ar{denuing 3D 2D than in 3D, and so vortices should be comparatively

condensates. The three-dimensional results were calculat@gsier to form in 2D.

from solutions of the 3D GPE, given by E(l), with asp

taken to be equal ta, the scattering length used for the 2D
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