125 research outputs found

    Persistent High Burden of Invasive Pneumococcal Disease in South African HIV-Infected Adults in the Era of an Antiretroviral Treatment Program

    Get PDF
    Highly active antiretroviral treatment (HAART) programs have been associated with declines in the burden of invasive pneumococcal disease (IPD) in industrialized countries. The aim of this study was to evaluate trends in IPD hospitalizations in HIV-infected adults in Soweto, South Africa, associated with up-scaling of the HAART program from 2003 to 2008.Laboratory-confirmed IPD cases were identified from 2003 through 2008 through an existing surveillance program. The period 2003-04 was designated as the early-HAART era, 2005-06 as the intermediate-HAART era and 2007-08 as the established-HAART era. The incidence of IPD was compared between the early-HAART and established-HAART eras in HIV-infected and-uninfected individuals.A total of 2,567 IPD cases among individuals older than 18 years were reported from 2003 through 2008. Overall incidence of IPD (per 100,000) did not change during the study period in HIV-infected adults (207.4 cases in the early-HAART and 214.0 cases in the established-HAART era; p = 0.55). IPD incidence, actually increased 1.16-fold (95% CI: 1.01; 1.62) in HIV-infected females between the early-and established-HAART eras (212.1 cases and 246.2 cases, respectively; p = 0.03). The incidence of IPD remained unchanged in HIV-uninfected adults across the three time periods.Despite a stable prevalence of HIV and the increased roll-out of HAART for treatment of AIDS patients in our setting, the burden of IPD has not decreased among HIV-infected adults. The study indicates a need for ongoing monitoring of disease and HAART program effectiveness to reduce opportunistic infections in African adults with HIV/AIDS, as well as the need to consider alternate strategies including pneumococcal conjugate vaccine immunization for the prevention of IPD in HIV-infected adults

    Alternative Sigma Factor σH Modulates Prophage Integration and Excision in Staphylococcus aureus

    Get PDF
    The prophage is one of the most important components of variable regions in bacterial genomes. Some prophages carry additional genes that may enhance the toxicity and survival ability of their host bacteria. This phenomenon is predominant in Staphylococcus aureus, a very common human pathogen. Bioinformatics analysis of several staphylococcal prophages revealed a highly conserved 40-bp untranslated region upstream of the int gene. A small transcript encoding phage integrase was identified to be initiated from the region, demonstrating that the untranslated region contained a promoter for int. No typical recognition sequence for either σA or σB was identified in the 40-bp region. Experiments both in vitro and in vivo demonstrated that σH recognized the promoter and directed transcription. Genetic deletion of sigH altered the int expression, and subsequently, the excision proportion of prophage DNAs. Phage assays further showed that sigH affected the ability of spontaneous lysis and lysogenization in S. aureus, suggesting that sigH plays a role in stabilizing the lysogenic state. These findings revealed a novel mechanism of prophage integration specifically regulated by a host-source alternative sigma factor. This mechanism suggests a co-evolution strategy of staphylococcal prophages and their host bacteria

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p

    Using jasmonates and salicylates to reduce losses within the fruit supply chain

    Get PDF
    The fresh produce industry is constantly growing, due to increasing consumer demand. The shelf-life of some fruit, however, is relatively short, limited by microbial contamination or visual, textural and nutritional quality loss. Thus, techniques for reducing undesired microbial contamination, spoilage and decay, as well as maintaining product’s visual, textural and nutritional quality are in high demand at all steps within the supply chain. The postharvest use of signalling molecules, i.e. jasmonates and salicylates seems to have unexplored potential. The focus of this review is on the effects of treatment with jasmonates and salicylates on the fresh produce quality, defined by decay incidence and severity, chilling injury, maintenance of texture, visual quality, taste and aroma, and nutritional content. Postharvest treatments with jasmonates and salicylates have the ability to reduce decay by increasing fruit resistance to diseases and reducing chilling injury in numerous products. These treatments also possess the ability to improve other quality characteristics, i.e. appearance, texture maintenance and nutritional content. Furthermore, they can easily be combined with other treatments, e.g. heat treatment, ultrasound treatment. A good understanding of all the benefits and limitations related to the postharvest use of jasmonates and salicylates is needed, and relevant information has been reviewed in this paper

    Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    Get PDF
    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches
    corecore