11 research outputs found

    Optimisation of the dibromomaleimide (DBM) platform for native antibody conjugation by accelerated post-conjugation hydrolysis

    Get PDF
    Disulfide bridging offers a convenient approach to generate site-selective antibody conjugates from native antibodies. To optimise the reagents available to achieve this strategy, we describe here the use of dibromomaleimides designed to undergo accelerated post-conjugation hydrolysis. Conjugation and hydrolysis, which serve to 'lock' the conjugates as robustly stable maleamic acids, is achieved in just over 1 h. This dramatic acceleration is also shown to infer significant improvements in homogeneity, as demonstrated by mass spectrometry analysis

    Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation

    Get PDF
    Background: Species generally have a fixed number of chromosomes in the cell nuclei while between-species differences are common and often pronounced. These differences could have evolved through multiple speciation events, each involving the fixation of a single chromosomal rearrangement. Alternatively, marked changes in the karyotype may be the consequence of within-species accumulation of multiple chromosomal fissions/fusions, resulting in highly polymorphic systems with the subsequent extinction of intermediate karyomorphs. Although this mechanism of chromosome number evolution is possible in theory, it has not been well documented. Results: We present the discovery of exceptional intraspecific variability in the karyotype of the widespread Eurasian butterfly Leptidea sinapis. We show that within this species the diploid chromosome number gradually decreases from 2n = 106 in Spain to 2n = 56 in eastern Kazakhstan, resulting in a 6000 km-wide cline that originated recently (8,500 to 31,000 years ago). Remarkably, intrapopulational chromosome number polymorphism exists, the chromosome number range overlaps between some populations separated by hundreds of kilometers, and chromosomal heterozygotes are abundant. We demonstrate that this karyotypic variability is intraspecific because in L. sinapis a broad geographical distribution is coupled with a homogenous morphological and genetic structure. Conclusions: The discovered system represents the first clearly documented case of explosive chromosome number evolution through intraspecific and intrapopulation accumulation of multiple chromosomal changes. Leptidea sinapis may be used as a model system for studying speciation by means of chromosomally-based suppressed recombination mechanisms, as well as clinal speciation, a process that is theoretically possible but difficult to document. The discovered cline seems to represent a narrow time-window of the very first steps of species formation linked to multiple chromosomal changes that have occurred explosively. This case offers a rare opportunity to study this process before drift, dispersal, selection, extinction and speciation erase the traces of microevolutionary events and just leave the final picture of a pronounced interspecific chromosomal difference

    Use of a next generation maleimide in combination with THIOMAB (TM) antibody technology delivers a highly stable, potent and near homogeneous THIOMAB (TM) antibody-drug conjugate (TDC)

    Get PDF
    Herein we demonstrate that conjugation of a next generation maleimide (NGM) to engineered cysteines in a THIOMABℱ antibody delivers a THIOMABℱ antibody-drug conjugate (TDC) with a drug loading of ca. 2. This TDC is highly stable in blood serum conditions, selective and potent towards HER2 expressing cell lines and meets the current criteria for optimised antibody-drug conjugates (ADCs)

    Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC)

    Get PDF
    Herein we report the use of next generation maleimides (NGMs) for the construction of a potent antibody–drug conjugate (ADC) via functional disulfide bridging. The linker has excellent stability in blood serum and the ADC, armed with monomethyl auristatin E (MMAE), shows excellent potency and cancer cell selectivity in vitro

    Pyridazinediones deliver potent, stable, targeted and efficacious antibody-drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody

    Get PDF
    Herein we report the use of pyridazinediones to functionalise the native solvent accessible interstrand disulfide bonds in trastuzumab with monomethyl auristatin E (MMAE). This method of conjugation delivers serum stable antibody–drug conjugates (ADCs) with a controlled drug loading of 4. Moreover, we demonstrate that the MMAE-bearing ADCs are potent, selective and efficacious against cancer cell lines in both in vitro and in vivo models

    Distribution of a Ty3/gypsy-like retroelement on the A and B-chromosomes of Cestrum strigilatum Ruiz & Pav. and Cestrum intermedium Sendtn. (Solanaceae)

    No full text
    Retroelements are a diversified fraction of eukaryotic genomes, with the Ty1/copia and Ty3/gypsy groups being very common in a large number of plant genomes. We isolated an internal segment of the Ty3/gypsy retroelement of Cestrum strigilatum (Solanaceae) using PCR amplification with degenerate primers for a conserved region of reverse transcriptase. The isolated segment (pCs12) was sequenced and showed similarity with Ty3/gypsy retroelements of monocotyledons and dicotyledons. This segment was used as probe in chromosomes of C. strigilatum and Cestrum intermedium. Diffuse hybridization signals were observed along the chromosomes and more accentuated terminal signals in some chromosome pairs, always associated with nucleolus organizer regions (NORs). The physical relationship between the hybridization sites of pCs12 and pTa71 ribosomal probes was assessed after sequential fluorescence in situ hybridization (FISH). Hybridization signals were also detected in the B chromosomes of these species, indicating an entail among the chromosomes of A complement and B-chromosomes

    Current outlook on radionuclide delivery systems: from design consideration to translation into clinics

    No full text
    corecore