20 research outputs found
Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach
This paper studies the problem of computing Nash equilibrium in wireless
networks modeled by Weighted Timed Automata. Such formalism comes together with
a logic that can be used to describe complex features such as timed energy
constraints. Our contribution is a method for solving this problem using
Statistical Model Checking. The method has been implemented in UPPAAL model
checker and has been applied to the analysis of Aloha CSMA/CD and IEEE 802.15.4
CSMA/CA protocols.Comment: In Proceedings IWIGP 2012, arXiv:1202.422
Game theory framework for MAC parameter optimization in energy-delay constrained sensor networks
Optimizing energy consumption and end-to-end (e2e) packet delay in energy-constrained, delay-sensitive wireless sensor networks is a conflicting multiobjective optimization problem. We investigate the problem from a game theory perspective, where the two optimization objectives are considered as game players. The cost model of each player is mapped through a generalized optimization framework onto protocol-specific MAC parameters. From the optimization framework, a game is first defined by the Nash bargaining solution (NBS) to assure energy consumption and e2e delay balancing. Secondy, the Kalai-Smorodinsky bargaining solution (KSBS) is used to find an equal proportion of gain between players. Both methods offer a bargaining solution to the duty-cycle MAC protocol under different axioms. As a result, given the two performance requirements (i.e., the maximum latency tolerated by the application and the initial energy budget of nodes), the proposed framework allows to set tunable system parameters to reach a fair equilibrium point that dually minimizes the system latency and energy consumption. For illustration, this formulation is applied to six state-of-the-art wireless sensor network (WSN) MAC protocols: B-MAC, X-MAC, RI-MAC, SMAC, DMAC, and LMAC. The article shows the effectiveness and scalability of such a framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements
Energy efficient transmission scheduling for delay constrained wireless networks
10.1109/TWC.2006.1603968IEEE Transactions on Wireless Communications52531-53
On Optimal Performance in Mobile Ad-Hoc Networks
In this paper we are concerned with finding the maximum throughput that a mobile ad hoc network can support. Even when nodes are stationary, the problem of determining the capacity region has long been known to be NP-hard. Mobility introduces an additional dimension of complexity because nodes now also have to decide when they should initiate route discovery. Since route discovery involves communication and computation overhead, it should not be invoked very often. On the other hand, mobility implies that routes are bound to become stale resulting in sub-optimal performance if routes are not updated. We attempt to gain some understanding of these effects by considering a simple one-dimensional network model. The simplicity of our model allows us to use stochastic dynamic programming (SDP) to find the maximum possible network throughput with ideal routing and medium access control (MAC) scheduling. Using the optimal value as a benchmark, we also propose and evaluate the performance of a simple threshold-based heuristic. Unlike the optimal policy which requires considerable state information, the heuristic is very simple to implement and is not overly sensitive to the threshold value used. We find empirical conditions for our heuristic to be near-optimal as well as network scenarios when our simple heuristic does not perform very well. We provide extensive numerical and simulation results for different parameter settings of our model
Energy-Efficient Caching Strategies in Ad Hoc Wireless Networks
In this paper, we address the problem of energy-conscious cache placement in wireless ad hoc networks. We consider a network comprising a server with an interface to the wired network, and some nodes requiring access to the information stored at the server. In order to reduce access latency in such a communication environment, an effective strategy is caching the server information at some nodes distributed across the network. Caching, however, can considerably impact the system energy expenditure; for instance, disseminating information incurs additional energy burden. Since wireless devices have limited amounts of available energy, we need to design caching strategies that optimally trade-off between energy consumption and access latency. We pose our problem as an integer linear program. We show that this problem is the same as a special case of the connected facility location problem, which is known to be NP-hard. We devise a polynomial time algorithm which provides a sub-optimal solution. The proposed algorithm applies to any arbitrary network topology and can be implemented in a distributed and asynchronous manner. In the case of a tree topology, our algorithm gives the optimal solution. In the case of an arbitrary topology, it finds a feasible solution with an objective function value within a factor of 6 of the optimal value. This performance is very close to the best approximate solution known today, which is obtained in a centralized manner. We compare the performance of our algorithm against three candidate caching schemes, and show via extensive simulation that our algorithm consistently outperforms these alternative schemes