7,898 research outputs found

    The Euphrosyne family's contribution to the low albedo near-Earth asteroids

    Get PDF
    The Euphrosyne asteroid family is uniquely situated at high inclination in the outer Main Belt, bisected by the nu_6 secular resonance. This large, low albedo family may thus be an important contributor to specific subpopulations of the near-Earth objects. We present simulations of the orbital evolution of Euphrosyne family members from the time of breakup to the present day, focusing on those members that move into near-Earth orbits. We find that family members typically evolve into a specific region of orbital element-space, with semimajor axes near ~3 AU, high inclinations, very large eccentricities, and Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs with our derived orbital element limits, we find that the population of candidate objects is significantly lower in albedo than the overall NEO population, although many of our candidates are also darker than the Euphrosyne family, and may have properties more similar to comet nuclei. Followup characterization of these candidates will enable us to compare them to known family properties, and confirm which ones originated with the breakup of (31) Euphrosyne.Comment: Accepted for publication in Ap

    MAESTRO, CASTRO, and SEDONA -- Petascale Codes for Astrophysical Applications

    Full text link
    Performing high-resolution, high-fidelity, three-dimensional simulations of Type Ia supernovae (SNe Ia) requires not only algorithms that accurately represent the correct physics, but also codes that effectively harness the resources of the most powerful supercomputers. We are developing a suite of codes that provide the capability to perform end-to-end simulations of SNe Ia, from the early convective phase leading up to ignition to the explosion phase in which deflagration/detonation waves explode the star to the computation of the light curves resulting from the explosion. In this paper we discuss these codes with an emphasis on the techniques needed to scale them to petascale architectures. We also demonstrate our ability to map data from a low Mach number formulation to a compressible solver.Comment: submitted to the Proceedings of the SciDAC 2010 meetin

    Domains of invasion organelle proteins from apicomplexan parasites are homologous with the Apple domains of blood coagulation factor XI and plasma pre-kallikrein and are members of the PAN module superfamily

    Get PDF
    AbstractMicronemes are specialised organelles, found in all apicomplexan parasites, which secrete molecules that are essential for parasite attachment to and invasion of host cells. Regions of several microneme proteins have sequence similarity to the Apple domains (A-domains) of blood coagulation factor XI (FXI) and plasma pre-kallikrein (PK). We have used mass spectrometry on a recombinant-expressed, putative A-domain from the microneme protein EtMIC5 from Eimeria tenella, to demonstrate that three intramolecular disulphide bridges are formed. These bridges are analogous to those that stabilise A-domains in FXI and PK. The data confirm that the apicomplexan domains are structural homologues of A-domains and are therefore novel members of the PAN module superfamily, which also includes the N-terminal domains of members of the plasminogen/hepatocyte growth factor family. The role of A-domains/PAN modules in apicomplexan parasites is not known, but their presence in the microneme suggests that they may be important for mediating protein–protein or protein–carbohydrate interactions during parasite attachment and host cell invasion

    Asteroid family identification using the Hierarchical Clustering Method and WISE/NEOWISE physical properties

    Full text link
    Using albedos from WISE/NEOWISE to separate distinct albedo groups within the Main Belt asteroids, we apply the Hierarchical Clustering Method to these subpopulations and identify dynamically associated clusters of asteroids. While this survey is limited to the ~35% of known Main Belt asteroids that were detected by NEOWISE, we present the families linked from these objects as higher confidence associations than can be obtained from dynamical linking alone. We find that over one-third of the observed population of the Main Belt is represented in the high-confidence cores of dynamical families. The albedo distribution of family members differs significantly from the albedo distribution of background objects in the same region of the Main Belt, however interpretation of this effect is complicated by the incomplete identification of lower-confidence family members. In total we link 38,298 asteroids into 76 distinct families. This work represents a critical step necessary to debias the albedo and size distributions of asteroids in the Main Belt and understand the formation and history of small bodies in our Solar system.Comment: Accepted to ApJ. Full version of Table 3 to be published electronically in Ap

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa

    Single-Shot Electron Diffraction using a Cold Atom Electron Source

    Get PDF
    Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness. Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.Comment: This is an author-created, un-copyedited version of an article published in Journal of Physics B: Atomic, Molecular and Optical Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0953-4075/48/21/21400

    NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos

    Get PDF
    The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) reactivation mission has completed its third year of surveying the sky in the thermal infrared for near-Earth asteroids and comets. NEOWISE collects simultaneous observations at 3.4 um and 4.6 um of solar system objects passing through its field of regard. These data allow for the determination of total thermal emission from bodies in the inner solar system, and thus the sizes of these objects. In this paper we present thermal model fits of asteroid diameters for 170 NEOs and 6110 MBAs detected during the third year of the survey, as well as the associated optical geometric albedos. We compare our results with previous thermal model results from NEOWISE for overlapping sample sets, as well as diameters determined through other independent methods, and find that our diameter measurements for NEOs agree to within 26% (1-sigma) of previously measured values. Diameters for the MBAs are within 17% (1-sigma). This brings the total number of unique near-Earth objects characterized by the NEOWISE survey to 541, surpassing the number observed during the fully cryogenic mission in 2010.Comment: Accepted for publication in A

    A spectroscopically confirmed z=1.327 galaxy-scale deflector magnifying a z~8 Lyman-Break galaxy in the Brightest of Reionizing Galaxies survey

    Full text link
    We present a detailed analysis of an individual case of gravitational lensing of a z∼8z\sim8 Lyman-Break galaxy (LBG) in a blank field, identified in Hubble Space Telescope imaging obtained as part of the Brightest of Reionizing Galaxies survey. To investigate the close proximity of the bright (mAB=25.8m_{AB}=25.8) Y098Y_{098}-dropout to a small group of foreground galaxies, we obtained deep spectroscopy of the dropout and two foreground galaxies using VLT/X-Shooter. We detect H-α\alpha, H-β\beta, [OIII] and [OII] emission in the brightest two foreground galaxies (unresolved at the natural seeing of 0.80.8 arcsec), placing the pair at z=1.327z=1.327. We can rule out emission lines contributing all of the observed broadband flux in H160H_{160} band at 70σ70\sigma, allowing us to exclude the z∼8z\sim8 candidate as a low redshift interloper with broadband photometry dominated by strong emission lines. The foreground galaxy pair lies at the peak of the luminosity, redshift and separation distributions for deflectors of strongly lensed z∼8z\sim8 objects, and we make a marginal detection of a demagnified secondary image in the deepest (J125J_{125}) filter. We show that the configuration can be accurately modelled by a singular isothermal ellipsoidal deflector and a S\'{e}rsic source magnified by a factor of μ=4.3±0.2\mu=4.3\pm0.2. The reconstructed source in the best-fitting model is consistent with luminosities and morphologies of z∼8z\sim8 LBGs in the literature. The lens model yields a group mass of 9.62±0.31×1011M⊙9.62\pm0.31\times10^{11} M_{\odot} and a stellar mass-to-light ratio for the brightest deflector galaxy of M⋆/LB=2.3−0.6+0.8M⊙/L⊙M_{\star}/L_{B}=2.3^{+0.8}_{-0.6} M_{\odot}/L_{\odot} within its effective radius. The foreground galaxies' redshifts would make this one of the few strong lensing deflectors discovered at z>1z>1.Comment: Accepted for publication in MNRAS. 16 pages, 11 figures, 3 table
    • …
    corecore