985 research outputs found

    Fusing Thermopile Infrared Sensor Data for Single Component Activity Recognition within a Smart Environment

    Get PDF
    To provide accurate activity recognition within a smart environment, visible spectrum cameras can be used as data capture devices in solution applications. Privacy, however, is a significant concern with regards to monitoring in a smart environment, particularly with visible spectrum cameras. Their use, therefore, may not be ideal. The need for accurate activity recognition is still required and so an unobtrusive approach is addressed in this research highlighting the use of a thermopile infrared sensor as the sole means of data collection. Image frames of the monitored scene are acquired from a thermopile infrared sensor that only highlights sources of heat, for example, a person. The recorded frames feature no discernable characteristics of people; hence privacy concerns can successfully be alleviated. To demonstrate how thermopile infrared sensors can be used for this task, an experiment was conducted to capture almost 600 thermal frames of a person performing four single component activities. The person’s position within a room, along with the action being performed, is used to appropriately predict the activity. The results demonstrated that high accuracy levels, 91.47%, for activity recognition can be obtained using only thermopile infrared sensors

    Micropattern traction microscopy: a technique for the simplification of cellular traction force measurements

    Full text link
    Thesis (Ph.D.)--Boston UniversityCells respond to a number of cues that affect how they interact with their surrounding environment, such as topology, the presentation of adhesive ligands, and stiffness. Recent advancements in the field ofmechanobiology have revealed that one of the main ways in which cells sense these cues is through contractile forces. Mechanobiology research seeks to understand how environmental cues affect the forces that cells exert on their surronnding environment and how these mechanical forces are communicated to the cell and transformed into biochemical signals. Therefore, quantitative methods have been developed to determine cell contractility on soft, optically transparent, deformable surfaces by quantifying substrate deformation in terms of cellular traction forces. However, the currently available tools that are used to study cell interactions are limited in their applicability due to the need for specialized technical expertise that is not amenable to the widespread adaptation of these techniques. Therefore, we have sought to develop a novel traction force microscopy technique known as micropattem traction microscopy. With this technique, we hope to greatly simplify the current traction force microscopy techniques and provide a method which will be able to be adopted by a wide range of laboratories. This dissertation describes the process ofthe development and application of this novel traction force technique to probe questions in mechanobiology that have not been previously broached due to the lack of appropriate tools. The technique itself uses indirect microcontact printing to create a regularized array of fluorescent protein onto a glass substrate, which is then transferred to an optically transparent, soft, elastic polyacrylamide hydrogel. Cells, limited by their ability to adhere only to patterned regions, will deform the pattern at these defined points. Thus, with knowledge of the bulk elastic properties ofthe substrate and a priori knowledge of the pattern, we are able to quantify the force a cell is exerting without its removal. We also developed and released a robust, automated MATLAB program that will aid users in the calculation of traction forces so that people with limited experience with programming can utilize the program without significant investments into training. This indirect approach allows for not only individual proteins, but also for multiple, spatially distinct, fluorescent proteins such as fibronectin and gelatin to be simultaneously patterned onto this surface as well. The ability to pattern multiple proteins in a spatially defmed region significantly aids in giving users control over as many parameters as possible. Finally, we will explore the current and future potential that this technique has to offer to researchers in the field of mechanobiology

    Virulence Determination for Rapid Extraintestinal Dissemination (Acute Infection) of Common Salmonella Serotypes in Swine

    Get PDF
    Salmonella enterica (Typhimurium and Choleraesuis) have been shown to rapidly disseminate extraintestinally (RED) within 3 hours of intranasal inoculation in pigs (1,2,5,6). Evaluation of RED serotypes may be an important indicator of Salmonella virulence. Experimentally, pigs were challenged with important lymph node, fecal, and vaccine isolates of Salmonella and evaluated for RED. These isolates include S. Heidelberg, S. Infantis, S. Derby, S. Worthington, S. 4, 12 imonophasic, S. untypable HL 10416, S. Typhimurium, S. Typhimurium variant Copenhagen, S. Bredeney, S. Muenchen, S. Brandenburg, S. Choleraesuis SC-38, S. Choleraesuis SC-54, and S. Choleraesuis strain Argus. Three hours after intranasal inoculation, the pigs were euthanized, necropsied, and the following tissues were collected for qualitative isolation: tonsil, thymus, blood, mandibular lymph node, lung, spleen, liver, ileocecal lymph node, colon contents, and cecum contents. Fewer tissues were positive for vaccine strains compared with wild type or parent strains

    muSR and Magnetometry Study of the Type-I Superconductor BeAu

    Full text link
    We present muon spin rotation and relaxation (muSR) measurements as well as demagnetising field corrected magnetisation measurements on polycrystalline samples of the noncentrosymmetric superconductor BeAu. From muSR measurements in a transverse field, we determine that BeAu is a type-I superconductor with Hc = 256 Oe, amending the previous understanding of the compound as a type-II superconductor. To account for demagnetising effects in magnetisation measurements, we produce an ellipsoidal sample, for which a demagnetisation factor can be calculated. After correcting for demagnetising effects, our magnetisation results are in agreement with our muSR measurements. Using both types of measurements we construct a phase diagram from T = 30 mK to Tc = 3.25 K. We then study the effect of hydrostatic pressure and find that 450 MPa decreases Tc by 34 mK, comparable to the change seen in type-I elemental superconductors Sn, In and Ta, suggesting BeAu is far from a quantum critical point accessible by the application of pressure.Comment: 10 pages, 8 figure

    INTRAVENOUS RANOLAZINE RELIEVES ISCHEMIA BY INCREASING MYOCARDIAL ADENOSINE LEVELS

    Get PDF

    Effects of receptor clustering on ligand dissociation: Theory and simulations

    Get PDF
    Receptor-ligand binding is a critical first step in signal transduction and the duration of the interaction can impact signal generation. In mammalian cells, clustering of receptors may be facilitated by heterogeneous zones of lipids, known as lipid rafts. In vitro experiments show that disruption of rafts significantly alters the dissociation of fibroblast growth factor-2 (FGF-2) from heparan sulfate proteoglycans, co-receptors for FGF-2. In this paper, we develop a continuum stochastic formalism in order to (i) study how rebinding affects the dissociation of ligands from a planar substrate, and (ii) address the question of how receptor clustering influences ligand rebinding. We find that clusters reduce the effective dissociation rate dramatically when the clusters are dense and the overall surface density of receptors is low. The effect is much less pronounced in the case of high receptor density and shows non-monotonic behavior with time. These predictions are verified via lattice Monte Carlo simulations. Comparison with experimental results suggests that the theory does not capture the complete biological system. We speculate that additional co-operative mechanisms might be present in order to increase ligand retention, and present one possible ``internal diffusion'' model.Comment: Expanded text and added figures, revised version to appear in Biophys.

    A Systematic Review of Evidence for the Clubhouse Model of Psychosocial Rehabilitation

    Get PDF
    The Clubhouse Model has been in existence for over sixty-five years; however, a review that synthesizes the literature on the model is needed. The current study makes use of the existing research to conduct a systematic review of articles providing a comprehensive understanding of what is known about the Clubhouse Model, to identify the best evidence available, as well as areas that would benefit from further study. Findings are summarized and evidence is classified by outcome domains. Fifty-two articles met the selection criteria of Randomized Clinical Trials (RCT\u27s), quasi-experimental studies, or observational studies for domains of employment (N = 29); quality of life/satisfaction (N = 10); reductions in psychiatric hospitalization(s) (N = 10); social relationships (N = 10); education (N = 3); and health promotion activities (N = 2). RCT results support the efficacy of the Clubhouse Model in promoting employment, reducing hospitalization(s), and improving quality of life. Quasi-experimental and observational studies offer support in education and social domains. The findings from this review indicate that Clubhouses are a promising practice but additional studies using rigorous methods that report the strength of the outcomes are needed to evaluate Clubhouse programs with fidelity to the Clubhouse Model

    Atmospheric Processing Module for Mars Propellant Production

    Get PDF
    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methane/oxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx.8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO2 is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a HiCO2 recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO2/hr for 14 hr, (3) the testing of the CO2 freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH4/hr and 71.3 g H2O/hr along with verification of their purity. The resulting 2.22 kg of CH4/O2 propellant per 14 hr day (including O2 from electrolysis of water recovered from regolith, which also supplies the H2 for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASA's new Mars exploration plans will be discussed

    A Computational Approach for Deciphering the Organization of Glycosaminoglycans

    Get PDF
    BACKGROUND. Increasing evidence has revealed important roles for complex glycans as mediators of normal and pathological processes. Glycosaminoglycans are a class of glycans that bind and regulate the function of a wide array of proteins at the cell-extracellular matrix interface. The specific sequence and chemical organization of these polymers likely define function; however, identification of the structure-function relationships of glycosaminoglycans has been met with challenges associated with the unique level of complexity and the nontemplate-driven biosynthesis of these biopolymers. METHODOLOGY/PRINCIPAL FINDINGS. To address these challenges, we have devised a computational approach to predict fine structure and patterns of domain organization of the specific glycosaminoglycan, heparan sulfate (HS). Using chemical composition data obtained after complete and partial digestion of mixtures of HS chains with specific degradative enzymes, the computational analysis produces populations of theoretical HS chains with structures that meet both biosynthesis and enzyme degradation rules. The model performs these operations through a modular format consisting of input/output sections and three routines called chainmaker, chainbreaker, and chainsorter. We applied this methodology to analyze HS preparations isolated from pulmonary fibroblasts and epithelial cells. Significant differences in the general organization of these two HS preparations were observed, with HS from epithelial cells having a greater frequency of highly sulfated domains. Epithelial HS also showed a higher density of specific HS domains that have been associated with inhibition of neutrophil elastase. Experimental analysis of elastase inhibition was consistent with the model predictions and demonstrated that HS from epithelial cells had greater inhibitory activity than HS from fibroblasts. CONCLUSIONS/SIGNIFICANCE. This model establishes the conceptual framework for a new class of computational tools to use to assess patterns of domain organization within glycosaminoglycans. These tools will provide a means to consider high-level chain organization in deciphering the structure-function relationships of polysaccharides in biology.US National Institutes of Health (HL56200, HL088672); the Massachusetts Lions Eye Research Fund, Inc
    • …
    corecore