42 research outputs found

    Mapping of a new locus for congenital anomalies of the kidney and urinary tract on chromosome 8q24

    Get PDF
    Background. Congenital anomalies of the kidney and urinary tract (CAKUT) account for the majority of end-stage renal disease in children (50%). Previous studies have mapped autosomal dominant loci for CAKUT. We here report a genome-wide search for linkage in a large pedigree of Somalian descent containing eight affected individuals with a non-syndromic form of CAKUT. Methods. Clinical data and blood samples were obtained from a Somalian family with eight individuals with CAKUT including high-grade vesicoureteral reflux and unilateral renal agenesis. Total genome search for linkage was performed using a 50K SNP Affymetric DNA microarray. As neither parent is affected, the results of the SNP array were analysed under recessive models of inheritance, with and without the assumption of consanguinity. Results. Using the non-consanguineous recessive model, a new gene locus (CAKUT1) for CAKUT was mapped to chromosome 8q24 with a significant maximum parametric Logarithm of the ODDs (LOD) score (LODmax) of 4.2. Recombinations were observed in two patients defining a critical genetic interval of 2.5 Mb physical distance flanked by markers SNP_A-1740062 and SNP_A-1653225. Conclusion. We have thus identified a new non-syndromic recessive gene locus for CAKUT (CAKUT1) on chromosome 8q24. The identification of the disease-causing gene will provide further insights into the pathogenesis of urinary tract malformations and mechanisms of renal developmen

    A novel C8orf37 splice mutation and genotype-phenotype correlation for cone-rod dystrophy

    No full text
    Background: To identify the disease-causing mutation in a consanguineous family of Morrocan origin with syndromic autosomal recessive (ar) cone-rod dystrophy (CRD) in two patients and describe genotype-phenotype correlations.Materials and Methods: Genome-wide homozygosity mapping and direct sequencing of C8orf37, located in a homozygous interval, was performed in the family. mRNA analysis revealed the effect of the newly identified splice-site mutation. For a comparative analysis phenotypic and genetic data of C8orf37 mutations were extracted from published cases.Results: The new splice-site mutation c.155+2T>C identified in the family results in a skipping of 82 bp. The CRD phenotypes of our patients were consistent with previous reports. Non-ocular findings in our patients and two previously described patients were postaxial polydactyly present at birth. Both families with additional postaxial polydactyly had splice site mutations affecting intron 1 of C8orf37, one at the slice donor and one at the splice acceptor site.Conclusions: This report extends the genotypic spectrum of C8orf37-associated retinal dystrophies and demonstrates for the first time a genotype-phenotype correlation between an arCRD-polydactyly-association and truncating germline mutations affecting the N-terminal region of the protein. Furthermore, our findings underline the ciliary function of C8orf37 protein

    A homozygous splice site mutation in TRAPPC9 causes intellectual disability and microcephaly

    No full text
    Autosomal recessive intellectual disability is believed to be particularly prevalent in highly consanguineous populations and genetic isolates and may account for a quarter of all non-syndromic cases. Mutations in more than 50 genes have been reported to be involved in autosomal recessive intellectual disability, including TRAPPC9 (MIM 611966), mutations of which have been identified in six families from different geographical origins. We performed a clinical and molecular genetic study of a consanguineous Pakistani family segregating intellectual disability and microcephaly. SNP-array-based homozygosity mapping revealed suggestive linkage to four genomic regions including one on chromosome 8 that contained TRAPPC9. We detected a homozygous TRAPPC9 splice donor site mutation (c.1024+1G>T) that cosegregated with intellectual disability in the family and led to skipping of exon 3 and exons 3 and 4 in blood-derived patient RNA. We have thus identified a novel splice site mutation leading to exon skipping and premature termination of TRAPPC9 translation. These data further suggest that TRAPPC9 mutations -unlike mutations in the vast majority of the known intellectual disability-associated genese- constitute a more frequent cause of autosomal-recessive cognitive deficits, especially when microcephaly is also present. (C) 2012 Elsevier Masson SAS. All rights reserved

    Use of genome-wide SNP homozygosity mapping in small pedigrees to identify new mutations in VSX2 causing recessive microphthalmia and a semidominant inner retinal dystrophy

    No full text
    Mutations in the visual system homeobox 2 gene (VSX2, also known as CHX10), which encodes a retinal transcription factor from the paired homeobox family, have been implicated in recessive isolated microphthalmia. In this study, we use genome-wide single nucleotide polymorphism homozygosity mapping in unrelated small consanguineous pedigrees and a candidate gene approach to identify three further causative VSX2 mutations (two novel and one previously reported). All affected individuals with homozygous mutations had bilateral anophthalmia or severe microphthalmia with absent vision. In addition, we identified a novel inner retinal dystrophy in two carrier parents suggesting a semidominant effect for this particular VSX2 mutation. A further study of individuals with retinal degenerative conditions may reveal a causative role for heterozygous mutations in VSX2

    A C-terminal nonsense mutation links PTPRQ with autosomal-dominant hearing loss, DFNA73

    No full text
    Purpose: Hearing loss is genetically extremely heterogeneous, making it suitable for next-generation sequencing (NGS). We identified a four-generation family with nonsyndromic mild to severe hearing loss of the mid-to high frequencies and onset from early childhood to second decade in seven members. Methods: NGS of 66 deafness genes, Sanger sequencing, genome-wide linkage analysis, whole-exome sequencing (WES), semiquantitative reverse-transcriptase polymerase chain reaction. Results: We identified a heterozygous nonsense mutation, c.6881G> A (p.Trp2294*), in the last coding exon of PTPRQ. PTPRQ has been linked with recessive (DFNB84A), but not dominant deafness. NGS and Sanger sequencing of all exons (including alternatively spliced 5' and N-scan-predicted exons of a putative extended transcript) did not identify a second mutation. The highest logarithm of the odds score was in the PTPRQ-containing region on chromosome 12, and p.Trp2294* cosegregated with hearing loss. WES did not identify other cosegregating candidate variants from the mapped region. PTPRQ expression in patient fibroblasts indicated that the mutant allele escapes nonsense-mediated decay (NMD). Conclusion: Known PTPRQ mutations are recessive and do not affect the C-terminal exon. In contrast to recessive loss-of-function mutations, c.6881G> A transcripts may escape NMD. PTPRQ(Trp2294*) protein would lack only six terminal residues and could exert a dominant-negative effect, a possible explanation for allelic deafness, DFNA73, clinically and genetically distinct from DFNB84A

    Frank-ter Haar syndrome associated with sagittal craniosynostosis and raised intracranial pressure

    Get PDF
    Background: Frank-ter Haar syndrome is a rare disorder associated with skeletal, cardiac, ocular and craniofacial features including hypertelorism and brachycephaly. The most common underlying genetic defect in Frank-ter Haar syndrome appears to be a mutation in the SH3PXD2B gene on chromosome 5q35.1. Craniosynostosis, or premature fusion of the calvarial sutures, has not previously been described in Frank-ter Haar syndrome. Case presentation: We present a family of three affected siblings born to consanguineous parents with clinical features in keeping with a diagnosis of Frank-ter Haar syndrome. All three siblings have a novel mutation caused by the deletion of exon 13 of the SH3PXD2B gene. Two of the three siblings also have non-scaphocephalic sagittal synostosis associated with raised intracranial pressure. Conclusion: The clinical features of craniosynostosis and raised intracranial pressure in this family with a confirmed diagnosis of Frank-ter Haar syndrome expand the clinical spectrum of the disease. The abnormal cranial proportions in a mouse model of the disease suggests that the association is not coincidental. The possibility of craniosynostosis should be considered in individuals with a suspected diagnosis of Frank-ter Haar syndrome

    A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula

    Get PDF
    Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes-to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigenebased analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G(CLRN1) represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes
    corecore