46 research outputs found

    Novel Echocardiographic Biomarkers in the Management of Atrial Fibrillation

    Get PDF
    Purpose of Review: Atrial fibrillation (AF) is the most common arrhythmia in adults. The number of patients with AF is anticipated to increase annually, mainly due to the aging population alongside improved arrhythmia detection. AF is associated with a significantly elevated risk of hospitalization, stroke, thromboembolism, heart failure, and all-cause mortality. Echocardiography is one of the key components of routine assessment and management of AF. Therefore, the aim of this review is to briefly summarize current knowledge on “novel” echocardiographic parameters that may be of value in the management of AF patients. Recent Findings: Novel echocardiographic biomarkers and their clinical application related to the management of AF have been taken into consideration. Both standard parameters such as atrial size and volume but also novels like atrial strain and tissue Doppler techniques have been analyzed. Summary: A number of novel echocardiographic parameters have been proven to enable early detection of left atrial dysfunction along with increased diagnosis accuracy. This concerns particularly experienced echocardiographers. Hence, these techniques might improve the prediction of stroke and thromboembolic events among AF patients and need to be further developed and disseminated. Nonetheless, even the standard imaging parameters could be of significant value and should not be discontinued in everyday clinical practice. © 2019, The Author(s)

    Altered Anatomical Network in Early Blindness Revealed by Diffusion Tensor Tractography

    Get PDF
    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. Diffusion MRI studies have revealed the efficient small-world properties and modular structure of the anatomical network in normal subjects. However, no previous study has used diffusion MRI to reveal changes in the brain anatomical network in early blindness. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 17 early blind subjects and 17 age- and gender-matched sighted controls. We established the existence of structural connections between any pair of the 90 cortical and sub-cortical regions using deterministic tractography. Compared with controls, early blind subjects showed a decreased degree of connectivity, a reduced global efficiency, and an increased characteristic path length in their brain anatomical network, especially in the visual cortex. Moreover, we revealed some regions with motor or somatosensory function have increased connections with other brain regions in the early blind, which suggested experience-dependent compensatory plasticity. This study is the first to show alterations in the topological properties of the anatomical network in early blindness. From the results, we suggest that analyzing the brain's anatomical network obtained using diffusion MRI data provides new insights into the understanding of the brain's re-organization in the specific population with early visual deprivation

    A Review of the Status of Brain Structure Research in Transsexualism

    Get PDF

    Arcuate fasciculus tractography integrated into Gamma Knife surgery

    No full text
    corecore