8 research outputs found

    Transcriptome profiling disclosed the effect of single and combined drought and heat stress on reprogramming of genes expression in barley flag leaf

    Get PDF
    Despite numerous studies aimed at unraveling the genetic background of barley’s response to abiotic stress, the modulation of the transcriptome induced by combinatorial drought and increased temperature remains largely unrecognized. Very limited studies were done, especially on the flag leaf, which plays an important role in grain filling in cereals. In the present study, transcriptome profiles, along with chlorophyll fluorescence parameters and yield components, were compared between barley genotypes with different flag leaf sizes under single and combined drought and heat stress. High-throughput mRNA sequencing revealed 2,457 differentially expressed genes, which were functionally interpreted using Gene Ontology term enrichment analysis. The transcriptomic signature under double stress was more similar to effects caused by drought than by elevated temperature; it was also manifested at phenotypic and chlorophyll fluorescence levels. Both common and stress-specific changes in transcript abundance were identified. Genes regulated commonly across stress treatments, determining universal stress responses, were associated, among others, with responses to drought, heat, and oxidative stress. In addition, changes specific to the size of the flag leaf blade were found. Our study allowed us to identify sets of genes assigned to various processes underlying the response to drought and heat, including photosynthesis, the abscisic acid pathway, and lipid transport. Genes encoding LEA proteins, including dehydrins and heat shock proteins, were especially induced by stress treatments. Some association between genetic composition and flag leaf size was confirmed. However, there was no general coincidence between SNP polymorphism of genotypes and differential expression of genes induced by stress factors. This research provided novel insight into the molecular mechanisms of barley flag leaf that determine drought and heat response, as well as their co-occurrence

    The eINTACT system dissects bacterial exploitation of plant osmosignalling to enhance virulence

    Get PDF
    Bacteria inject effector proteins into host cells to manipulate cellular processes that promote disease. Since bacteria deliver minuscule amounts of effectors only into targeted host cells, it is technically challenging to capture effector-dependent cellular changes from bulk-infected host tissues. Here, we report a new technique called effector-inducible isolation of nuclei tagged in specific cell types (eINTACT), which facilitates affinity-based purification of nuclei from Arabidopsis plant cells that have received Xanthomonas bacterial effectors. Analysis of purified nuclei reveals that the Xanthomonas effector XopD manipulates the expression of Arabidopsis abscisic acid signalling-related genes and activates OSCA1.1, a gene encoding a calcium-permeable channel required for stomatal closure in response to osmotic stress. The loss of OSCA1.1 causes leaf wilting and reduced bacterial growth in infected leaves, suggesting that OSCA1.1 promotes host susceptibility. eINTACT allows us to uncover that XopD exploits host OSCA1.1/abscisic acid osmosignalling-mediated stomatal closure to create a humid habitat that favours bacterial growth and opens up a new avenue for accurately elucidating functions of effectors from numerous gram-negative plant bacteria in native infection contexts.Fil: You, Yuan. Eberhard Karls Universität Tübingen; AlemaniaFil: Koczyk, Grzegorz. Polish Academy of Sciences; ArgentinaFil: Nuc, Maria. Polish Academy of Sciences; ArgentinaFil: Morbitzer, Robert. Eberhard Karls Universität Tübingen; AlemaniaFil: Holmes, Danalyn R.. Eberhard Karls Universität Tübingen; AlemaniaFil: von Roepenack Lahaye, Edda. Eberhard Karls Universität Tübingen; AlemaniaFil: Hou, Shiji. Huazhong Agricultural University; ChinaFil: Giudicatti, Axel Joel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Gris, Carine. Université de Toulouse; FranciaFil: Manavella, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Noël, Laurent D.. Université de Toulouse; FranciaFil: Krajewski, Paweł. Polish Academy of Sciences; ArgentinaFil: Lahaye, Thomas. Eberhard Karls Universität Tübingen; Alemani

    What nature separated, and human joined together: About a spontaneous hybridization between two allopatric dogwood species (Cornus controversa and C. alternifolia).

    No full text
    In this study, possible hybridization between two allopatric species, Cornus controversa and Cornus alternifolia, was explored using molecular and morphological approaches. Scanning electron microscope analyses of the adaxial and the abaxial leaf surfaces yielded a few new not yet described characters typical for the particular species and intermediate for hybrids. With the use of 14 Random Amplified Polymorphic DNA and 5 Amplified Fragment Length Polymorphism primer combinations, 44 fragments species specific to C. controversa and 51 species specific to C. alternifolia were obtained. Most of these bands were also found in putative hybrids. All clustering analyses based on binary data combined from both methods confirmed a separate and intermediate status of the hybrids. Hybrid index estimates for hybrids C1-C5 indicated that all were the first generation of offspring (F1). Chloroplast intergenic spacers (trnF-trnL and psbC-trnS) were used to infer the hybridization direction. Based on the assumption of maternal inheritance of chloroplast DNA, C. controversa seems to be the maternal parent of the hybrid. Internal transcribed spacer sequences of the five hybrids analyzed here indicated higher similarity with the sequences of C. controversa (all shared the majority of its single nucleotide polymorphisms). Sequence analysis of PI-like genes fully confirmed the hybrid origin of C1-C5 hybrids. Our results also showed that two specimens in the C. alternifolia group, A1 and A3, are not free of introgression. They are probably repeated backcrosses toward C. alternifolia. Furthermore, molecular data seem to point not only to unidirectional introgression toward C. controversa (the presence of hybrids) but to bidirectional introgression as well, since the presence of markers specific for C. controversa in the profiles of C. alternifolia specimen A3 was observed

    The Resistance of Narrow-Leafed Lupin to Diaporthe toxica Is Based on the Rapid Activation of Defense Response Genes

    No full text
    Narrow-leafed lupin (Lupinus angustifolius L.) is a grain legume crop that is advantageous in animal nutrition due to its high protein content; however, livestock grazing on stubble may develop a lupinosis disease that is related to toxins produced by a pathogenic fungus, Diaporthe toxica. Two major unlinked alleles, Phr1 and PhtjR, confer L. angustifolius resistance to this fungus. Besides the introduction of these alleles into modern cultivars, the molecular mechanisms underlying resistance remained unsolved. In this study, resistant and susceptible lines were subjected to differential gene expression profiling in response to D. toxica inoculation, spanning the progress of the infection from the early to latent phases. High-throughput sequencing of stem transcriptome and PCR quantification of selected genes were performed. Gene Ontology term analysis revealed that an early (24 h) response in the resistant germplasm encompassed activation of genes controlling reactive oxygen species and oxylipin biosynthesis, whereas in the susceptible germplasm, it comprised induction of xyloglucan endotransglucosylases/hydrolases. During the first five days of the infection, the number of genes with significantly altered expressions was about 2.6 times higher in resistant lines than in the susceptible line. Global transcriptome reprogramming involving the activation of defense response genes occurred in lines conferring Phr1 and PhtjR resistance alleles about 4–8 days earlier than in the susceptible germplasm

    <b>Flow cytometric determination of ploidy level and reproduction modes in </b><b><i>Hypericum perforatum</i></b><b> cv. Helos</b>

    No full text
    Flow cytometry was carried out to determine the DNA content and thus the ploidy level of embryo and endosperm cells in 50 randomly selected seeds. This allows us to infer the ploidy level and reproductive modes of H. perforatum cv. Helos. The results suggest that H. perforatum cv. Helos is tetraploid and facultatively apomictic.</p

    Pontastacus leptodactylus (Eschscholtz, 1823) and Faxonius limosus (Rafinesque, 1817) as new, alternative sources of chitin and chitosan

    Get PDF
    The growing demand for chitin and chitosan makes it necessary to look for new sources of these polymers and to develop more environmentally friendly methods for their isolation. The subjects of the current study were chitin and chitosan extracted from shells of two crayfish species: P. leptodactylus and F. limosus. The obtained polymers were characterized by physicochemical properties (molecular weight, thermal stability, and structure). The obtained chitosan was evaluated regarding biocompatibility and antimicrobial activity. The yield of chitin obtained from P. leptodactylus and F. limosus with a standard method was 22 ± 2.7% and 20 ± 3.6% (w/w), respectively (a preliminary extraction with a natural deep eutectic solvent was performed successfully only for P. leptodactylus). The yield of chitosan production was 15 ± 0.3% and 14 ± 4.2%, respectively. Both chitosan samples showed antimicrobial activity against E. coli and S. aureus. Cytotoxicity assays revealed a time- and concentration-dependent effect, with a milder impact at concentrations up to 250 µg/mL. A more favourable profile was observed for chitosan from F. limosus shells.info:eu-repo/semantics/publishedVersio
    corecore