23 research outputs found

    Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain

    Get PDF
    Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Macrophages and microglia are crucially involved in the formation and repair of demyelinated lesions. Here we show that myelin uptake temporarily skewed these phagocytes toward a disease-resolving phenotype, while sustained intracellular accumulation of myelin induced a lesion-promoting phenotype. This phenotypic shift was controlled by stearoyl-CoA desaturase-1 (SCD1), an enzyme responsible for the desaturation of saturated fatty acids. Monounsaturated fatty acids generated by SCD1 reduced the surface abundance of the cholesterol efflux transporter ABCA1, which in turn promoted lipid accumulation and induced an inflammatory phagocyte phenotype. Pharmacological inhibition or phagocyte-specific deficiency of Scd1 accelerated remyelination ex vivo and in vivo. These findings identify SCD1 as a novel therapeutic target to promote remyelination

    Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia.

    No full text
    Stearoyl-CoA desaturase (SCD) is expressed at high levels in several human tissues and is required for the biosynthesis of oleate (18:1) and palmitoleate (16:1). These monounsaturated fatty acids are the major components of phospholipids, triglycerides, wax esters, and cholesterol esters. Mice with a targeted disruption of the SCD1 gene have very low levels of VLDL and impaired triglyceride and cholesterol ester biosynthesis. In the HYPLIP mouse, a model of hyperlipidemia, there was a 4-fold increase in hepatic SCD activity, a 1.8-fold increase in the desaturation index, and a 2-fold increase in plasma triglycerides. We used the plasma ratio of 18:1/18:0 (the "desaturation index") as an in vivo measure of SCD activity in human subjects. In human subjects with triglycerides ranging from 0.3 to 20 mM, the desaturation ratio accounted for one-third of the variance in plasma triglyceride levels. A 2-fold increase in the desaturation index was associated with a 4-fold increase in plasma triglycerides. In human subjects exposed to a high carbohydrate diet, the desaturation index explained 44% of the variance in triglycerides. We propose that many of the factors that influence plasma triglyceride levels do so by converging upon the regulation of SCD activity

    Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats

    No full text
    As the consumption of fructose and saturated fatty acids (FAs) has greatly increased in western diets and is linked with an increased risk of metabolic syndrome, the aim of this study was to investigate the effects of a moderate (10 weeks) and a prolonged (30 weeks) high fructose and saturated fatty acid (HFS) diet on plasma FA composition in rats. The effects of a few weeks of HFS diet had already been described, but in this paper we tried to establish whether these effects persist or if they are modified after 10 or 30 weeks. We hypothesized that the plasma FA profile would be altered between 10 and 30 weeks of the HFS diet. Rats fed with either the HFS or a standard diet were tested after 10 weeks and again after 30 weeks. After 10 weeks of feeding, HFS-fed rats developed the metabolic syndrome, as manifested by an increase in fasting insulinemia, total cholesterol and triglyceride levels, as well as by impaired glucose tolerance. Furthermore, the plasma FA profile of the HFS group showed higher proportions of monounsaturated FAs like palmitoleic acid [16:1(n-7)] and oleic acid [18:1(n-9)], whereas the proportions of some polyunsaturated n-6 FAs, such as linoleic acid [18:2(n-6)] and arachidonic acid [20:4(n-6)], were lower than those in the control group. After 30 weeks of the HFS diet, we observed changes mainly in the levels of 16:1(n-7) (decreased) and 20:4(n-6) (increased). Together, our results suggest that an HFS diet could lead to an adaptive response of the plasma FA profile over time, in association with the development of the metabolic syndrome
    corecore