8 research outputs found

    Midgut microbiota of the malaria mosquito vector Anopheles gambiae and Interactions with plasmodium falciparum Infection

    Get PDF
    The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.Institut de Recherche pour le Developpement (IRD); French Agence Nationale pour la Recherche [ANR-11-BSV7-009-01]; European Community [242095, 223601]info:eu-repo/semantics/publishedVersio

    Influence of the sickle cell trait on Plasmodium falciparum infectivity from naturally infected gametocyte carriers

    No full text
    Abstract Background Sickle cell trait (SCT) refers to the carriage of one abnormal copy of the β-globin gene, the HbS allele. SCT offers protection against malaria, controlling parasite density and preventing progression to symptomatic malaria. However, it remains unclear whether SCT also affects transmission stages and mosquito infection parameters. Deciphering the impact of the SCT on human to mosquito malaria transmission is key to understanding mechanisms that maintain the trait in malaria endemic areas. Methods The study was conducted from June to July 2017 among asymptomatic children living in the locality of Mfou, Cameroon. Blood samples were collected from asymptomatic children to perform malaria diagnosis by microscopy, Plasmodium species by PCR and hemoglobin typing by RFLP. Infectiousness of gametocytes to mosquitoes was assessed by membrane feeding assays using blood from gametocyte carriers of HbAA and HbAS genotypes. A zero-inflated model was fitted to predict distribution of oocysts in mosquitoes according to hemoglobin genotype of the gametocyte source. Results Among the 1557 children enrolled in the study, 314 (20.16%) were of the HbAS genotype. The prevalence of children with P. falciparum gametocytes was 18.47% in HbAS individuals and 13.57% in HbAA, and the difference is significant (χ2 = 4.61, P = 0.032). Multiplicity of infection was lower in HbAS gametocyte carriers (median = 2 genotypes/carrier in HbAS versus 3.5 genotypes/carrier in HbAA, Wilcoxon sum rank test = 188, P = 0.032). Gametocyte densities in the blood donor significantly influenced mosquito infection prevalence in both HbAS and HbAA individuals. The HbAS genotype had no significant effect on mosquito infection outcomes when using immune or naïve serum in feeding assays. In AB replacement feeding experiments, the odds ratio of mosquito infection for HbAA blood as compared to HbAS was 0.56 (95% CI 0.29–1.10), indicating a twice higher risk of infection in mosquitoes fed on gametocyte-containing blood of HbAS genotype. Conclusion Plasmodium transmission stages were more prevalent in SCT individuals. This may reflect the parasite’s enhanced investment in the sexual stage to increase their survival rate when asexual replication is impeded. The public health impact of our results points the need for intensive malaria control interventions in areas with high prevalence of HbAS. The similar infection parameters in feeding experiments where mosquitoes received the original serum from the blood donor indicated that immune responses to gametocyte surface proteins occur in both HbAS and HbAA individuals. The higher risk of infection in mosquitoes fed on HbAS blood depleted of immune factors suggests that changes in the membrane properties in HbAS erythrocytes may impact on the maturation process of gametocytes within circulating red blood cells

    A chromosomal reference genome sequence for the malaria mosquito, Anopheles moucheti, Evans, 1925

    No full text
    International audienceWe present a genome assembly from an individual male Anopheles moucheti (the malaria mosquito; Arthropoda; Insecta; Diptera; Culicidae), from a wild population in Cameroon. The genome sequence is 271 megabases in span. The majority of the assembly is scaffolded into three chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 15.5 kilobases in length

    Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria

    Get PDF
    The development of Plasmodium falciparum within the Anopheles gambiae mosquito relies on complex vector-parasite interactions, however the resident midgut microbiota also plays an important role in mediating parasite infection. In natural conditions, the mosquito microbial flora is diverse, composed of commensal and symbiotic bacteria. We report here the isolation of culturable midgut bacteria from mosquitoes collected in the field in Cameroon and their identification based on the 16S rRNA gene sequencing. We next measured the effect of selected natural bacterial isolates on Plasmodium falciparum infection prevalence and intensity over multiple infectious feedings and found that the bacteria significantly reduced the prevalence and intensity of infection. These results contrast with our previous study where the abundance of Enterobacteriaceae positively correlated with P. falciparum infection (Boissiere et al. 2012). The oral infection of bacteria probably led to the disruption of the gut homeostasis and activated immune responses, and this pinpoints the importance of studying microbe-parasite interactions in natural conditions. Our results indicate that the effect of bacterial exposure on P. falciparum infection varies with factors from the parasite and the human host and calls for deeper dissection of these parameters for accurate interpretation of bacterial exposure results in laboratory settings
    corecore