15 research outputs found

    Effect of Microwave Processing and Glass Inclusions on Thermoelectric Properties of P-Type Bismuth Antimony Telluride Alloys for Wearable Applications

    No full text
    Depending on the application of bismuth telluride thermoelectric materials in cooling, waste heat recovery, or wearable electronics, their material properties, and geometrical dimensions should be designed to optimize their performance. Recently, thermoelectric materials have gained a lot of interest in wearable electronic devices for body heat harvesting and cooling purposes. For efficient wearable electronic devices, thermoelectric materials with optimum properties, i.e., low thermal conductivity, high Seebeck coefficient, and high thermoelectric figure-of-merit (zT) at room temperature, are demanded. In this paper, we investigate the effect of glass inclusion, microwave processing, and annealing on the synthesis of high-performance p-type (BixSb1−x)2Te3 nanocomposites, optimized specially for body heat harvesting and body cooling applications. Our results show that glass inclusion could enhance the room temperature Seebeck coefficient by more than 10% while maintaining zT the same. Moreover, the combination of microwave radiation and post-annealing enables a 25% enhancement of zT at room temperature. A thermoelectric generator wristband, made of the developed materials, generates 300 μW power and 323 mV voltage when connected to the human body. Consequently, MW processing provides a new and effective way of synthesizing p-type (BixSb1−x)2Te3 alloys with optimum transport properties

    High-Efficiency Skutterudite Modules at a Low Temperature Gradient

    No full text
    Thermoelectric skutterudite materials have been widely investigated for their potential application in mid-temperature waste heat recovery that has not been efficiently utilized A large amount of research has focused on developing materials with a high thermoelectric figure of merit (zT). However, the translation of material properties to device performance has limited success. Here, we demonstrate single-filling n-type Yb0.25Fe0.25Co3.75Sb12 and multi-filling La0.7Ti0.1Ga0.1Fe2.7Co1.3Sb12 skutterudites with a maximum zT of ~1.3 at 740 K and ~0.97 at 760 K. The peak zT of skutterudites usually occurs above 800 K, but, as shown here, the shift in peak zT to lower temperatures is beneficial for enhancing conversion efficiency at a lower hot-side temperature. In this work, we have demonstrated that the Fe-substitution significantly reduces the thermal conductivity of n-type skutterudite, closer to p-type skutterudite thermal conductivity, resulting in a module that is more compatible to operate at elevated temperatures. A uni-couple skutterudite module was fabricated using a molybdenum electrode and Ga–Sn liquid metal as the thermal interface material. A conversion efficiency of 7.27% at a low temperature gradient of 366 K was achieved, which is among the highest efficiencies reported in the literature at this temperature gradient. These results highlight that peak zT shift and optimized module design can improve conversion efficiency of thermoelectric modules at a low temperature gradient

    Comparison of thermoelectric properties of nanostructured Mg2Si, FeSi2, SiGe, and nanocomposites of SiGe–Mg2Si, SiGe–FeSi2

    No full text
    Thermoelectric properties of nanostructured FeSi2, Mg2Si, and SiGe are compared with their nanocomposites of SiGe–Mg2Si and SiGe–FeSi2. It was found that the addition of silicide nanoinclusions to SiGe alloy maintained or increased the power factor while further reduced the thermal conductivity compared to the nanostructured single-phase SiGe alloy. This resulted in ZT enhancement of Si0.88Ge0.12–FeSi2 by ∼30% over the broad temperature range of 500-950 °C compared to the conventional Si0.80Ge0.20 alloy. The Si0.88Ge0.12–Mg2Si nanocomposite showed constantly increasing ZT versus temperature up to 950 °C (highest measured temperature) reaching ZT ∼ 1.3. These results confirm the concept of silicide nanoparticle-in-SiGe-alloy proposed earlier by Mingo et al. [Nano Lett. 9, 711–715 (2009)]

    Brookite TiO2 Nanorods as Promising Electrochromic and Energy Storage Materials for Smart Windows

    Get PDF
    Electrochromic smart windows (ESWs) offer an attractive option for regulating indoor lighting conditions. Electrochromic materials based on ion insertion/desertion mechanisms also present the possibility for energy storage, thereby increasing overall energy efficiency and adding value to the system. However, current electrochromic electrodes suffer from performance degradation, long response time, and low coloration efficiency. This work aims to produce defect-engineered brookite titanium dioxide (TiO) nanorods (NRs) with different lengths and investigate their electrochromic performance as potential energy storage materials. The controllable synthesis of TiO NRs with inherent defects, along with smaller impedance and higher carrier concentrations, significantly enhances their electrochromic performance, including improved resistance to degradation, shorter response times, and enhanced coloration efficiency. The electrochromic performance of TiO NRs, particularly longer ones, is characterized by fast switching speeds (20 s for coloration and 12 s for bleaching), high coloration efficiency (84.96 cm C at a 600 nm wavelength), and good stability, highlighting their potential for advanced electrochromic smart window applications based on Li ion intercalation
    corecore