504 research outputs found

    Application of Chiral Lanthanide-induced Shift Reagents to Optically Active Cations: the Use of Tris[3-(trifluoromethylhydroxymethylene)-( + )-camphorato]europium(III) to Determine the Enantiomeric Purity of Tris(phenanthroline)ruthenium(II) Dichloride

    Get PDF
    In non-polar solvents, chiral europium complexes provide attractive n. m. r. shift reagents to resolve spectra of optically active cations, and, in particular, for tris(phenanthroline)ruthenium dichloride,^1H n. m. r. shift differences of up to 0.7 p.p.m. between isomers easily permit the determination of absolute enantiomeric purity

    Correlation between stick-slip frictional sliding and charge transfer

    Full text link
    A decade ago, Budakian and Putterman (Phys. Rev. Lett., {\bf 85}, 1000 (2000)) ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the visco-elastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.Comment: 8 pages, 4 figures, To be appeared in Physical Review

    Litter decay rates are determined by lignin chemistry

    Get PDF
    Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and p-hydroxyphenyl-type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and p-hydroxyphenyl-type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-p-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone

    Low-temperature phase transformations of PZT in the morphotropic phase-boundary region

    Full text link
    We present anelastic and dielectric spectroscopy measurements of PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the low temperature phase transitions. The tetragonal-to-monoclinic transformation is first-order for x < 0.48 and causes a softening of the polycrystal Young's modulus whose amplitude may exceed the one at the cubic-to-tetragonal transformation; this is explainable in terms of linear coupling between shear strain components and tilting angle of polarization in the monoclinic phase. The transition involving rotations of the octahedra below 200 K is visible both in the dielectric and anelastic losses, and it extends within the tetragonal phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure

    MINIMALIST: An Environment for the Synthesis, Verification and Testability of Burst-Mode Asynchronous Machines

    Get PDF
    MINIMALIST is a new extensible environment for the synthesis and verification of burst-mode asynchronous finite-state machines. MINIMALIST embodies a complete technology-independent synthesis path, with state-of-the-art exact and heuristic asynchronous synthesis algorithms, e.g.optimal state assignment (CHASM), two-level hazard-free logic minimization (HFMIN, ESPRESSO-HF, and IMPYMIN), and synthesis-for-testability. Unlike other asynchronous synthesis packages, MINIMALIST also offers many options:literal vs. product optimization, single- vs. multi-output logic minimization, using vs. not using fed-back outputs as state variables, and exploring varied code lengths during state assignment, thus allowing the designer to explore trade-offs and select the implementation style which best suits the application. MINIMALIST benchmark results demonstrate its ability to produce implementations with an average of 34% and up to 48% less area, and an average of 11% and up to 37% better performance, than the best existing package. Our synthesis-for-testability method guarantees 100% testability under both stuck-at and robust path delay fault models,requiring little or no overhead. MINIMALIST also features both command-line and graphic user interfaces, and supports extension via well-defined interfaces for adding new tools. As such, it is easily augmented to form a complete path to technology-dependent logic

    Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors

    Get PDF
    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∼10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions

    Effect of internal friction on transformation twin dynamics in SrxBa1-xSnO3 perovskite

    Full text link
    The dynamics of transformation twins in SrxBa1-xSnO3 (x=0.6,0.8) perovskite has been studied by dynamical mechanical analysis in three-point bend geometry. This material undergoes phase transitions from orthorhombic to tetragonal and cubic structures on heating. The mechanical loss signatures of the transformation twins include relaxation and frequency-independent peaks in the orthorhombic and tetragonal phases, with no observed energy dissipation in the cubic phase. The macroscopic shape, orientation and relative displacements of twin walls have been calculated from bending and anisotropy energies. The mechanical loss angle and distribution of relaxation time are discussed in term of bending modes of domain walls.Comment: 20 pages, 4 figure

    Double polarization hysteresis loop induced by the domain pinning by defect dipoles in HoMnO3 epitaxial thin films

    Full text link
    We report on antiferroelectriclike double polarization hysteresis loops in multiferroic HoMnO3 thin films below the ferroelectric Curie temperature. This intriguing phenomenon is attributed to the domain pinning by defect dipoles which were introduced unintentionally during film growth process. Electron paramagnetic resonance suggests the existence of Fe1+ defects in thin films and first principles calculations reveal that the defect dipoles would be composed of oxygen vacancy and Fe1+ defect. We discuss migration of charged point defects during film growth process and formation of defect dipoles along ferroelectric polarization direction, based on the site preference of point defects. Due to a high-temperature low-symmetry structure of HoMnO3, aging is not required to form the defect dipoles in contrast to other ferroelectrics (e.g., BaTiO3).Comment: 4 figure

    Octahedral tilting, monoclinic phase and the phase diagram of PZT

    Full text link
    Anelastic and dielectric spectroscopy measurements on PZT close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight in some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarisation and therefore cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ~ 0.1, at a temperature T_IT higher than the well established boundary T_T to the phase with tilted octahedra. It is proposed that around T_IT the octahedra start rotating in a disordered manner and finally become ordered below T_T. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of T_T(x) below x = 0.18 would be a consequence of the partial relieve of the mismatch between the cation radii with the initial stage of tilting below T_IT.Comment: submitted to J. Phys.: Condens. Matte
    corecore