435 research outputs found

    Quantitative treatment of the creep of metals by dislocation and rate-process theories

    Get PDF
    An equation for the steady-state rate of creep has been derived by applying the theory of dislocations to the creep of pure metals. The form of this equation is in agreement with empirical equations describing creep rates. The theory was also used to predict the dependence of steady-state rate of creep on physical constants of the material and good agreement was obtained with data in the literature for pure annealed metals. The rate of creep was found to decrease with increasing modulus of rigidity. This relation suggest that one of the requirements for a heat-resisting alloy is that its matrix be a metal that has a high modulus of rigidity and therefore a high modulus of elasticity

    Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements

    Full text link
    The complex elastic compliance and dielectric susceptibility of (Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the composition range between pure NBT and the morphotropic phase boundary included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the determination of the tetragonal region of the phase diagram, up to now impossible due to the strong lattice disorder and small distortions and polarizations involved. In spite of ample evidence of disorder and structural heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C transition merges into the diffuse and relaxor-like transition associated with broad maxima of the dielectric and elastic susceptibilities. An attempt is made at relating the different features in the anelastic and dielectric curves to different modes of octahedral rotations and polar cation shifts. The possibility is also considered that the cation displacements locally have monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Low-temperature phase transformations of PZT in the morphotropic phase-boundary region

    Full text link
    We present anelastic and dielectric spectroscopy measurements of PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the low temperature phase transitions. The tetragonal-to-monoclinic transformation is first-order for x < 0.48 and causes a softening of the polycrystal Young's modulus whose amplitude may exceed the one at the cubic-to-tetragonal transformation; this is explainable in terms of linear coupling between shear strain components and tilting angle of polarization in the monoclinic phase. The transition involving rotations of the octahedra below 200 K is visible both in the dielectric and anelastic losses, and it extends within the tetragonal phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure

    Effect of doping and oxygen vacancies on the octahedral tilt transitions in the BaCeO3 perovskite

    Full text link
    We present a systematic study of the effect of Y doping and hydration level on the structural transformations of BaCeO3 based on anelastic spectroscopy experiments. The temperature of the intermediate transformation between rhombohedral and orthorhombic Imma phases rises with increasing the molar fraction x of Y roughly as (500 K)x in the hydrated state, and is depressed of more than twice that amount after complete dehydration. This is explained in terms of the effect of doping on the average (Ce/Y)-O and Ba-O bond lengths, and of lattice relaxation from O vacancies. The different behavior of the transition to the lower temperature Pnma orthorhombic phase is tentatively explained in terms of progressive flattening of the effective shape of the OH ion and ordering of the O vacancies during cooling.Comment: 8 pages, 5 figure

    Hydrogen tunneling in the perovskite ionic conductor BaCe(1-x)Y(x)O(3-d)

    Full text link
    We present low-temperature anelastic and dielectric spectroscopy measurements on the perovskite ionic conductor BaCe(1-x)Y(x)O(3-x/2) in the protonated, deuterated and outgassed states. Three main relaxation processes are ascribed to proton migration, reorientation about an Y dopant and tunneling around a same O atom. An additional relaxation maximum appears only in the dielectric spectrum around 60 K, and does not involve H motion, but may be of electronic origin, e.g. small polaron hopping. The peak at the lowest temperature, assigned to H tunneling, has been fitted with a relaxation rate presenting crossovers from one-phonon transitions, nearly independent of temperature, to two-phonon processes, varying as T^7, to Arrhenius-like. Substituting H with D lowers the overall rate by 8 times. The corresponding peak in the dielectric loss has an intensity nearly 40 times smaller than expected from the classical reorientation of the electric dipole associated with the OH complex. This fact is discussed in terms of coherent tunneling states of H in a cubic and orthorhombically distorted lattice, possibly indicating that only H in the symmetric regions of twin boundaries exhibit tunneling, and in terms of reduction of the effective dipole due to lattice polarization.Comment: submitted to Phys. Rev.

    Double polarization hysteresis loop induced by the domain pinning by defect dipoles in HoMnO3 epitaxial thin films

    Full text link
    We report on antiferroelectriclike double polarization hysteresis loops in multiferroic HoMnO3 thin films below the ferroelectric Curie temperature. This intriguing phenomenon is attributed to the domain pinning by defect dipoles which were introduced unintentionally during film growth process. Electron paramagnetic resonance suggests the existence of Fe1+ defects in thin films and first principles calculations reveal that the defect dipoles would be composed of oxygen vacancy and Fe1+ defect. We discuss migration of charged point defects during film growth process and formation of defect dipoles along ferroelectric polarization direction, based on the site preference of point defects. Due to a high-temperature low-symmetry structure of HoMnO3, aging is not required to form the defect dipoles in contrast to other ferroelectrics (e.g., BaTiO3).Comment: 4 figure

    Materials science experiments in space

    Get PDF
    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued

    Octahedral tilting, monoclinic phase and the phase diagram of PZT

    Full text link
    Anelastic and dielectric spectroscopy measurements on PZT close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight in some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarisation and therefore cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ~ 0.1, at a temperature T_IT higher than the well established boundary T_T to the phase with tilted octahedra. It is proposed that around T_IT the octahedra start rotating in a disordered manner and finally become ordered below T_T. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of T_T(x) below x = 0.18 would be a consequence of the partial relieve of the mismatch between the cation radii with the initial stage of tilting below T_IT.Comment: submitted to J. Phys.: Condens. Matte
    • …
    corecore