16 research outputs found

    Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits

    Get PDF
    Background Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. Objective The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. Results The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Conclusions Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression

    Neurobiology of apathy in Alzheimer's disease

    Full text link

    Effects of SKF-83566 and haloperidol on performance on progressive ratio schedules maintained by sucrose and corn oil reinforcement: quantitative analysis using a new model derived from the Mathematical Principles of Reinforcement (MPR)

    Get PDF
    Rationale Mathematical models can assist the interpretation of the effects of interventions on schedule-controlled behaviour and help to differentiate between processes that may be confounded in traditional performance measures such as response rate and the breakpoint in progressive ratio (PR) schedules. Objective The effects of a D1-like dopamine receptor antagonist, 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide (SKF-83566), and a D2-like receptor antagonist, haloperidol, on rats’ performance on PR schedules maintained by sucrose and corn oil reinforcers were assessed using a new model derived from Killeen’s (Behav Brain Sci 17:105–172, 1994) Mathematical Principles of Reinforcement. Method Separate groups of rats were trained under a PR schedule using sucrose or corn oil reinforcers. SKF-83566 (0.015 and 0.03 mg kg−1) and haloperidol (0.05 and 0.1 mg kg−1) were administered intraperitoneally (five administrations of each treatment). Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model’s parameters were compared between treatments. Results Haloperidol reduced a (the parameter expressing incentive value) in the case of both reinforcers, but did not affect the parameters related to response time and post-reinforcement pausing. SKF-83566 reduced a and k (the parameter expressing sensitivity of post-reinforcement pausing to the prior inter-reinforcement interval) in the case of sucrose, but did not affect any of the parameters in the case of corn oil. Conclusions The results are consistent with the hypothesis that blockade of both D1-like and D2-like receptors reduces the incentive value of sucrose, whereas the incentive value of corn oil is more sensitive to blockade of D2-like than D1-like receptors

    Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D<sub>1</sub>, D<sub>2</sub>, and D<sub>3</sub> receptor antagonists

    No full text
    RationaleLow doses of dopamine (DA) antagonists and accumbens DA depletions reduce food-reinforced instrumental behavior but do not impair primary food motivation, causing animals to reallocate behavior away from food-reinforced tasks with high response requirements and select less effortful alternatives. However, it is uncertain if this same pattern of effects would occur if sucrose was used as the reinforcer. Objectives These experiments studied the impact of DA depletion and antagonism on performance of an effort-related choice task using sucrose as the reinforcer, as well as sucrose consumption, preference, and taste reactivity tests. Methods The effects of DA manipulations were assessed using a task in which rats chose between lever pressing on a fixed ratio 7 schedule for 5.0 % sucrose versus freely consuming a less concentrated solution (0.3 %). Results The DA depleting agent tetrabenazine shifted effort-related choice, decreasing lever pressing for 5.0 % sucrose but increasing intake of the concurrently available 0.3 % sucrose. Tetrabenazine did not affect sucrose appetitive taste reactivity, or sucrose consumption or preference, in free consumption tests. The D1 antagonist ecopipam and the D2 antagonist haloperidol also shifted choice behavior at doses that did not alter sucrose consumption or preference. In contrast, sucrose pre-exposure reduced consumption across all conditions. D3 antagonism had no effects. Conclusions D1 and D2 receptor blockade and DA depletion reduce the tendency to work for sucrose under conditions that leave fundamental aspects of sucrose motivation (intake, preference, hedonic reactivity) intact. These findings have implications for studies employing sucrose intake or preference in animal models of depression

    Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation

    No full text
    A decrease in dopamine D2 receptor (D2R) binding in the striatum is one of the most common findings in disorders that involve a dysregulation of motivation, including obesity, addiction and attention deficit hyperactivity disorder. As disruption of D2R signaling in the ventral striatum−including the nucleus accumbens (NAc)−impairs motivation, we sought to determine whether potentiating postsynaptic D2R-dependent signaling in the NAc would improve motivation. In this study, we used a viral vector strategy to overexpress postsynaptic D2Rs in either the NAc or the dorsal striatum. We investigated the effects of D2R overexpression on instrumental learning, willingness to work, use of reward value representations and modulation of motivation by reward associated cues. Overexpression of postsynaptic D2R in the NAc selectively increased motivation without altering consummatory behavior, the representation of the value of the reinforcer, or the capacity to use reward associated cues in flexible ways. In contrast, D2R overexpression in the dorsal striatum did not alter performance on any of the tasks. Thus, consistent with numerous studies showing that reduced D2R signaling impairs motivated behavior, our data show that postsynaptic D2R overexpression in the NAc specifically increases an animal's willingness to expend effort to obtain a goal. Taken together, these results provide insight into the potential impact of future therapeutic strategies that enhance D2R signaling in the NAc
    corecore