9,955 research outputs found

    Laser induced magnetization switching in films with perpendicular anisotropy: a comparison between measurements and a multi-macrospin model

    Full text link
    Thermally-assisted ultra-fast magnetization reversal in a DC magnetic field for magnetic multilayer thin films with perpendicular anisotropy has been investigated in the time domain using femtosecond laser heating. The experiment is set-up as an optically pumped stroboscopic Time Resolved Magneto-Optical Kerr Effect magnetometer. It is observed that a modest laser fluence of about 0.3 mJ/square-cm induces switching of the magnetization in an applied field much less than the DC coercivity (0.8 T) on the sub-nanosecond time-scale. This switching was thermally-assisted by the energy from the femtosecond pump-pulse. The experimental results are compared with a model based on the Landau Lifschitz Bloch equation. The comparison supports a description of the reversal process as an ultra-fast demagnetization and partial recovery followed by slower thermally activated switching due to the spin system remaining at an elevated temperature after the heating pulse.Comment: 8 pages, 10 figures, to be submitted to PR

    Invariant expectations and vanishing of bounded cohomology for exact groups

    Full text link
    We study exactness of groups and establish a characterization of exact groups in terms of the existence of a continuous linear operator, called an invariant expectation, whose properties make it a weak counterpart of an invariant mean on a group. We apply this operator to show that exactness of a finitely generated group GG implies the vanishing of the bounded cohomology of GG with coefficients in a new class of modules, which are defined using the Hopf algebra structure of 1(G)\ell_1(G).Comment: Final version, to appear in the Journal of Topology and Analysi

    Paradoxical diffusion: Discriminating between normal and anomalous random walks

    Full text link
    Commonly, normal diffusive behavior is characterized by a linear dependence of the second central moment on time, t\propto t, while anomalous behavior is expected to show a different time dependence, tδ \propto t^{\delta} with δ1\delta 1 for superdiffusive motions. Here we demonstrate that this kind of qualification, if applied straightforwardly, may be misleading: There are anomalous transport motions revealing perfectly "normal" diffusive character (t\propto t), yet being non-Markov and non-Gaussian in nature. We use recently developed framework \cite[Phys. Rev. E \textbf{75}, 056702 (2007)]{magdziarz2007b} of Monte Carlo simulations which incorporates anomalous diffusion statistics in time and space and creates trajectories of such an extended random walk. For special choice of stability indices describing statistics of waiting times and jump lengths, the ensemble analysis of paradoxical diffusion is shown to hide temporal memory effects which can be properly detected only by examination of formal criteria of Markovianity (fulfillment of the Chapman-Kolmogorov equation).Comment: 8 pages, 7 figure

    Detection of sodium in the atmosphere of WASP-69b

    Full text link
    Transit spectroscopy is one of the most commonly used methods to characterize exoplanets atmospheres. From the ground, these observations are very challenging due to the terrestrial atmosphere and its intrinsic variations, but high-spectral resolution observations overcome this difficulty by resolving the spectral lines and taking advantage of the different Doppler velocities of the Earth, the host star and the exoplanet. We analyze the transmission spectrum around the Na I doublet at 589 nm of the exoplanet WASP-69b, a hot Jupiter orbiting a K-type star with a period of 3.868 days, and compare the analysis to that of the well-know hot Jupiter HD 189733b. We also present the analysis of the Rossiter-McLaughlin effect for WASP-69b. Two transits of WASP-69b were observed with the HARPS-North spectrograph (R = 115 000) at the TNG telescope. We perform a telluric contamination subtraction based on the comparison between the observed spectra and a telluric water model. Then, the common steps of the differential spectroscopy are followed to extract the transmission spectrum. The method is tested with archival transit data of the extensively studied exoplanet HD 189733b, obtained with the HARPS-South spectrograph at ESO 3.6m telescope, and then applied to WASP-69b data. For HD 189733b, we spectrally resolve the Na I doublet and measure line contrasts of 0.72±0.05%0.72\pm0.05\% (D2) and 0.51±0.05%0.51\pm0.05\% (D1), and FWHMs of 0.64±0.040.64\pm0.04{\AA} (D2) and 0.60±0.060.60\pm0.06{\AA} (D1), in agreement with previously published results. A net blueshift of 0.04{\sim}0.04{\AA} is measured. For WASP-69b only the contrast of the D2 line is measured (5.8±0.3%5.8\pm0.3\%). Even if this corresponds to a detection at the 5σ5\sigma-level of excess absorption of 0.5±0.1%0.5\pm0.1\% in a passband of 1.51.5{\AA}, more transits are needed to fully characterize the lines profiles and retrieve accurate atmospheric properties.Comment: 15 pages, 14 figure

    The GTC exoplanet transit spectroscopy survey. VII. An optical transmission spectrum of WASP-48b

    Full text link
    We obtained long-slit optical spectroscopy of one transit of WASP-48b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) spectrograph at the 10.4 m Gran Telescopio Canarias (GTC). We integrated the spectrum of WASP-48 and one reference star in several channels with different wavelength ranges, creating numerous color light curves of the transit. We fit analytic transit curves to the data taking into account the systematic effects present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp/RsR_p/R_s) across wavelength. After removing the transit model and systematic trends to the curves we reached precisions between 261 ppm and 455-755 ppm for the white and spectroscopic light curves, respectively. We obtained Rp/RsR_p/R_s uncertainty values between 0.8×1030.8 \times 10^{-3} and 1.5×1031.5\times 10^{-3} for all the curves analyzed in this work. The measured transit depth for the curves made by integrating the wavelength range between 530 nm and 905 nm is in agreement with previous studies. We report a relatively flat transmission spectrum for WASP-48b with no statistical significant detection of atmospheric species, although the theoretical models that fit the data more closely include of TiO and VO.Comment: 8 pages, 8 figures. Accepted for publication in Astronomy and Astrophysic

    Universality class of the depinning transition in the two-dimensional Ising model with quenched disorder

    Full text link
    With Monte Carlo methods, we investigate the universality class of the depinning transition in the two-dimensional Ising model with quenched random fields. Based on the short-time dynamic approach, we accurately determine the depinning transition field and both static and dynamic critical exponents. The critical exponents vary significantly with the form and strength of the random fields, but exhibit independence on the updating schemes of the Monte Carlo algorithm. From the roughness exponents ζ,ζloc\zeta, \zeta_{loc} and ζs\zeta_s, one may judge that the depinning transition of the random-field Ising model belongs to the new dynamic universality class with ζζlocζs\zeta \neq \zeta_{loc}\neq \zeta_s and ζloc1\zeta_{loc} \neq 1. The crossover from the second-order phase transition to the first-order one is observed for the uniform distribution of the random fields, but it is not present for the Gaussian distribution.Comment: 16 pages, 16 figures, 3 table

    Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system

    Full text link
    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.Comment: 14 pages, 9 figure

    Lord of the Rings: A Kinematic Distance to Circinus X-1 from a Giant X-Ray Light Echo

    Get PDF
    Circinus X-1 exhibited a bright X-ray flare in late 2013. Follow-up observations with Chandra and XMM-Newton from 40 to 80 days after the flare reveal a bright X-ray light echo in the form of four well-defined rings with radii from 5 to 13 arcminutes, growing in radius with time. The large fluence of the flare and the large column density of interstellar dust towards Circinus X-1 make this the largest and brightest set of rings from an X-ray light echo observed to date. By deconvolving the radial intensity profile of the echo with the MAXI X-ray lightcurve of the flare we reconstruct the dust distribution towards Circinus X-1 into four distinct dust concentrations. By comparing the peak in scattering intensity with the peak intensity in CO maps of molecular clouds from the Mopra Southern Galactic Plane CO Survey we identify the two innermost rings with clouds at radial velocity ~ -74 km/s and ~ -81 km/s, respectively. We identify a prominent band of foreground photoelectric absorption with a lane of CO gas at ~ -32 km/s. From the association of the rings with individual CO clouds we determine the kinematic distance to Circinus X-1 to be DCirX1=9.41.0+0.8D_{Cir X-1} = 9.4^{+0.8}_{-1.0} kpc. This distance rules out earlier claims of a distance around 4 kpc, implies that Circinus X-1 is a frequent super-Eddington source, and places a lower limit of Γ22\Gamma \gtrsim 22 on the Lorentz factor and an upper limit of θjet3\theta_{jet} \lesssim 3^{\circ} on the jet viewing angle.Comment: 20 pages, 21 figures, Astrophysical Journal, in prin

    A feature-rich transmission spectrum for WASP-127b

    Full text link
    WASP-127b is one of the lowest density planets discovered to date. With a sub-Saturn mass (Mp=0.18±0.02MJM_{\rm p}=0.18 \pm 0.02 M_J) and super-Jupiter radius (Rp=1.37±0.04RJR_{\rm p}= 1.37 \pm 0.04 R_J), it orbits a bright G5 star, which is about to leave the main-sequence. We aim to explore WASP-127b's atmosphere in order to retrieve its main atmospheric components, and to find hints for its intriguing inflation and evolutionary history. We used the ALFOSC spectrograph at the NOT telescope to observe a low resolution (R330R\sim330, seeing limited) long-slit spectroscopic time series during a planetary transit, and present here the first transmission spectrum for WASP-127b. We find the presence of a strong Rayleigh slope at blue wavelengths and a hint of Na absorption, although the quality of the data does not allow us to claim a detection. At redder wavelengths the absorption features of TiO and VO are the best explanation to fit the data. Although higher signal-to-noise ratio observations are needed to conclusively confirm the absorption features, WASP-127b seems to posses a cloud-free atmosphere and is one of the best targets to perform further characterization studies in the near future.Comment: Accepted for Publication A&A Letters, May 22nd, 201
    corecore