5,536 research outputs found

    Equilibrium temperatures of mass transfer cooled walls in high-speed flow of an absorbing-emitting gas

    Get PDF
    Equilibrium temperatures of mass transfer cooled walls in high speed flow of absorbing-emitting ga

    Constitutional Law - Due Process - Whether the Denial of Loyalty Clearances May Be Based on Faceless Informer Evidence

    Get PDF

    Transfer-matrix approach to the three-dimensional bond percolation: An application of Novotny's formalism

    Get PDF
    A transfer-matrix simulation scheme for the three-dimensional (d=3) bond percolation is presented. Our scheme is based on Novotny's transfer-matrix formalism, which enables us to consider arbitrary (integral) number of sites N constituting a unit of the transfer-matrix slice even for d=3. Such an arbitrariness allows us to perform systematic finite-size-scaling analysis of the criticality at the percolation threshold. Diagonalizing the transfer matrix for N =4,5,...,10, we obtain an estimate for the correlation-length critical exponent nu = 0.81(5)

    Real-Time Description of the Electronic Dynamics for a Molecule close to a Plasmonic Nanoparticle

    Full text link
    The optical properties of molecules close to plasmonic nanostructures greatly differ from their isolated molecule counterparts. To theoretically investigate such systems in a Quantum Chemistry perspective, one has to take into account that the plasmonic nanostructure (e.g., a metal nanoparticle - NP) is often too large to be treated atomistically. Therefore, a multiscale description, where the molecule is treated by an ab initio approach and the metal NP by a lower level description, is needed. Here we present an extension of one such multiscale model [Corni, S.; Tomasi, J. {\it J. Chem. Phys.} {\bf 2001}, {\it 114}, 3739] originally inspired by the Polarizable Continuum Model, to a real-time description of the electronic dynamics of the molecule and of the NP. In particular, we adopt a Time-Dependent Configuration Interaction (TD CI) approach for the molecule, the metal NP is described as a continuous dielectric of complex shape characterized by a Drude-Lorentz dielectric function and the molecule- NP electromagnetic coupling is treated by an equation-of-motion (EOM) extension of the quasi-static Boundary Element Method (BEM). The model includes the effects of both the mutual molecule- NP time-dependent polarization and the modification of the probing electromagnetic field due to the plasmonic resonances of the NP. Finally, such an approach is applied to the investigation of the light absorption of a model chromophore, LiCN, in the presence of a metal NP of complex shape.Comment: This is the final peer-reviewed manuscript accepted for publication of an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Link to the original article: http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b1108

    Rejection-free Monte Carlo Algorithms for Models with Continuous Degrees of Freedom

    Full text link
    We construct a rejection-free Monte Carlo algorithm for a system with continuous degrees of freedom. We illustrate the algorithm by applying it to the classical three-dimensional Heisenberg model with canonical Metropolis dynamics. We obtain the lifetime of the metastable state following a reversal of the external magnetic field. Our rejection-free algorithm obtains results in agreement with a direct implementation of the Metropolis dynamic and requires orders of magnitude less computational time at low temperatures. The treatment is general and can be extended to other dynamics and other systems with continuous degrees of freedom.Comment: 4 pages, including figures. PRE, in pres

    Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines

    Full text link
    We show that pulse shaping techniques can be applied to tailor the ultrafast temporal response of the strongly confined and enhanced optical near fields in the feed gap of resonant optical antennas (ROAs). Using finite-difference time-domain (FDTD) simulations followed by Fourier transformation, we obtain the impulse response of a nano structure in the frequency domain, which allows obtaining its temporal response to any arbitrary pulse shape. We apply the method to achieve deterministic optimal temporal field compression in ROAs with reduced symmetry and in a two-wire transmission line connected to a symmetric dipole antenna. The method described here will be of importance for experiments involving coherent control of field propagation in nanophotonic structures and of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure

    Spin Hall effect of light in photon tunneling

    Full text link
    We resolve the breakdown of angular momentum conservation on two-dimensional photon tunneling by considering spin Hall effect (SHE) of light. This interesting effect manifests itself as polarization-dependent transverse shifts for a classic wave packet tunneling through a prism-air-prism barrier. For a certain circularly polarized component, the transverse shifts can be modulated by altering the refractive index gradient associated with the two prisms. We find that the SHE in conventional beam refraction can be evidently enhanced via photon tunneling mechanism. The polarization-dependent transverse shift is governed by the total angular momentum conservation law, while the polarization-dependent angular shift is governed by the total linear momentum law. These findings open the possibility for developing new nano-photonic devices and can be extrapolated to other physical systems.Comment: 8 pages, 5 figure

    High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy

    Get PDF
    We demonstrate the imaging capabilities of energy-filtered transmission electron microscopy at high-energy resolution in the low-energy-loss region, reporting the direct image of a surface plasmon of an elongated gold nanoparticle at energies around 1 eV. Using complimentary model calculations performed within the boundary element method approach we can assign the observed results to the plasmon eigenmodes of the metallic nanoparticle
    • …
    corecore