4,525 research outputs found

    Physiological reactions of a passenger to transportation conditions

    Get PDF
    The effect of transportation conditions on the performance capacity of a passenger were studied, in order to establish the time for his most rapid inclusion in production activity after the trip. It was concluded that the transportation conditions impair the functional condition of the passenger's organism. The restoration of the functional state to the initial level occurs mainly in the space of one day. It is shown that it is necessary to take into consideration the adaptation of the organism during transfer to another climate zone

    Stacking boundaries and transport in bilayer graphene

    Get PDF
    Pristine bilayer graphene behaves in some instances as an insulator with a transport gap of a few meV. This behaviour has been interpreted as the result of an intrinsic electronic instability induced by many-body correlations. Intriguingly, however, some samples of similar mobility exhibit good metallic properties, with a minimal conductivity of the order of 2e2/h2e^2/h. Here we propose an explanation for this dichotomy, which is unrelated to electron interactions and based instead on the reversible formation of boundaries between stacking domains (`solitons'). We argue, using a numerical analysis, that the hallmark features of the previously inferred many-body insulating state can be explained by scattering on boundaries between domains with different stacking order (AB and BA). We furthermore present experimental evidence, reinforcing our interpretation, of reversible switching between a metallic and an insulating regime in suspended bilayers when subjected to thermal cycling or high current annealing.Comment: 13 pages, 15 figures. Published version (Nano Letters

    Raman imaging and electronic properties of graphene

    Full text link
    Graphite is a well-studied material with known electronic and optical properties. Graphene, on the other hand, which is just one layer of carbon atoms arranged in a hexagonal lattice, has been studied theoretically for quite some time but has only recently become accessible for experiments. Here we demonstrate how single- and multi-layer graphene can be unambiguously identified using Raman scattering. Furthermore, we use a scanning Raman set-up to image few-layer graphene flakes of various heights. In transport experiments we measure weak localization and conductance fluctuations in a graphene flake of about 7 monolayer thickness. We obtain a phase-coherence length of about 2 μ\mum at a temperature of 2 K. Furthermore we investigate the conductivity through single-layer graphene flakes and the tuning of electron and hole densities via a back gate

    Density of states and zero Landau level probed through capacitance of graphene

    Get PDF
    We report capacitors in which a finite electronic compressibility of graphene dominates the electrostatics, resulting in pronounced changes in capacitance as a function of magnetic field and carrier concentration. The capacitance measurements have allowed us to accurately map the density of states D, and compare it against theoretical predictions. Landau oscillations in D are robust and zero Landau level (LL) can easily be seen at room temperature in moderate fields. The broadening of LLs is strongly affected by charge inhomogeneity that leads to zero LL being broader than other levels

    Metal-semiconductor (semimetal) superlattices on a graphite sheet with vacancies

    Full text link
    It has been found that periodically closely spaced vacancies on a graphite sheet cause a significant rearrange-ment of its electronic spectrum: metallic waveguides with a high density of states near the Fermi level are formed along the vacancy lines. In the direction perpendicular to these lines, the spectrum exhibits a semimetal or semiconductor character with a gap where a vacancy miniband is degenerated into impurity levels.Comment: 4 pages, 3 figure

    Planar Heterostructure Graphene -- Narrow-Gap Semiconductor -- Graphene

    Full text link
    We investigate a planar heterostructure composed of two graphene films separated by a narrow-gap semiconductor ribbon. We show that there is no the Klein paradox when the Dirac points of the Brillouin zone of graphene are in a band gap of a narrow-gap semiconductor. There is the energy range depending on an angle of incidence, in which the above-barrier damped solution exists. Therefore, this heterostructure is a "filter" transmitting particles in a certain range of angles of incidence upon a potential barrier. We discuss the possibility of an application of this heterostructure as a "switch".Comment: 9 pages, 2 figure

    Chiral tunneling and the Klein paradox in graphene

    Full text link
    The so-called Klein paradox - unimpeded penetration of relativistic particles through high and wide potential barriers - is one of the most exotic and counterintuitive consequences of quantum electrodynamics (QED). The phenomenon is discussed in many contexts in particle, nuclear and astro- physics but direct tests of the Klein paradox using elementary particles have so far proved impossible. Here we show that the effect can be tested in a conceptually simple condensed-matter experiment by using electrostatic barriers in single- and bi-layer graphene. Due to the chiral nature of their quasiparticles, quantum tunneling in these materials becomes highly anisotropic, qualitatively different from the case of normal, nonrelativistic electrons. Massless Dirac fermions in graphene allow a close realization of Klein's gedanken experiment whereas massive chiral fermions in bilayer graphene offer an interesting complementary system that elucidates the basic physics involved.Comment: 15 pages, 4 figure

    Making graphene visible

    Full text link
    Microfabrication of graphene devices used in many experimental studies currently relies on the fact that graphene crystallites can be visualized using optical microscopy if prepared on top of silicon wafers with a certain thickness of silicon dioxide. We study graphene's visibility and show that it depends strongly on both thickness of silicon dioxide and light wavelength. We have found that by using monochromatic illumination, graphene can be isolated for any silicon dioxide thickness, albeit 300 nm (the current standard) and, especially, approx. 100 nm are most suitable for its visual detection. By using a Fresnel-law-based model, we quantitatively describe the experimental data without any fitting parameters.Comment: Since v1: minor changes to text and figures to improve clarity; references added. Submitted to Applied Physics Letters, 30-Apr-07. 3 pages, 3 figure

    Atomic carbon chains as spin-transmitters: an \textit{Ab initio} transport study

    Full text link
    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin {\it et al.}, Phys. Rev. Lett. {\bf 102}, 205501 (2009). We present {\it ab initio} results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmission in large energy ranges. The effect is due to the spin-polarized zig-zag edge terminating each graphene flake causing a spin-splitting of the graphene πz\pi_z bands, and the chain states. Transmission occurs when the graphene π\pi-states resonate with similar states in the strongly hybridized edges and chain. This effect should in general hold for any π\pi-conjugated molecules bridging the zig-zag edges of graphene electrodes. The polarization of the transmission can be controlled by chemically or mechanically modifying the molecule, or by applying an electrical gate
    corecore