55 research outputs found

    Dust density waves in a dc flowing complex plasma with discharge polarity reversal

    Get PDF
    We report on the observation of the self-excited dust density waves in the dc discharge complex plasma. The experiments were performed under microgravity conditions in the Plasmakristall-4 facility on board the International Space Station. In the experiment, the microparticle cloud was first trapped in an inductively coupled plasma, then released to drift for some seconds in a dc discharge with constant current. After that the discharge polarity was reversed. DC plasma containing a drifting microparticle cloud was found to be strongly non-uniform in terms of microparticle drift velocity and plasma emission in accord with [Zobnin et.al., Phys. Plasmas 25, 033702 (2018)]. In addition to that, non-uniformity in the self-excited wave pattern was observed: In the front edge of the microparticle cloud (defined as head), the waves had larger phase velocity than in the rear edge (defined as tail). Also, after the polarity reversal, the wave pattern exhibited several bifurcations: Between each of the two old wave crests, a new wave crest has formed. These bifurcations, however, occurred only in the head of the microparticle cloud. We show that spatial variations of electric field inside the drifting cloud play an important role in the formation of the wave pattern. Comparison of the theoretical estimations and measurements demonstrate the significant impact of the electric field on the phase velocity of the wave. The same theoretical approach applied to the instability growth rate, showed agreement between estimated and measured values.Comment: 7 pages, 4 figure

    ВлияниС автооблучСния Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… слоСв Π·ΠΎΠ»ΠΎΡ‚Π° ΠΏΡ€ΠΈ ΠΈΠΎΠ½Π½ΠΎ-Π»ΡƒΡ‡Π΅Π²ΠΎΠΌ Π½Π°ΠΏΡ‹Π»Π΅Π½ΠΈΠΈ

    Get PDF
    2–13 nm gold films were obtained by the method of ion-beam sputtering on silicon and quartz substrates. It is shown that the use of an additional operation of deposition followed by the sputtering of a gold layer of 2–3 nm thickness makes it possible to reduce the electrical resistance and surface roughness of the metal films, in comparison with similar films obtained without its use. The results of measuring the temperature coefficient of resistance of nanosized gold films on silicon substrates allowed us to conclude that the films deposited become continuous at a thickness of 6-8 nm. The results of optical measurements of 10 nm gold films, obtained on quartz substrates, showed that the reflection coefficient of electromagnetic radiation at a wavelength of 850 nm is 2.8 % higher than the corresponding coefficient for the same films obtained without using this operation, and is 83 %. An important role in the formation of nanoscale gold layers is played by the processes of self-irradiation of the growing layer of the high-energy component of the gold atoms flux. When using an additional operation of deposition/sputtering, high-energy gold atoms are implanted into the substrate to a depth of about 2 nm. On the one hand, these atoms are point defects in the surface damaged layer of the substrate; on the other hand, they serve as additional centers of cluster formation. This ensures strong adhesion of the metal layer to the substrate and, therefore, the gold films become continuous and more homogeneous in microstructure. The method of ion-beam deposition can be successfully applied to obtain high-quality conductive optically transparent nanosized gold films.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΎΠ½Π½ΠΎ-Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ напылСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΠ»Π΅Π½ΠΊΠΈ Π·ΠΎΠ»ΠΎΡ‚Π° Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 2–13 Π½ΠΌ Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… ΠΈ ΠΊΠ²Π°Ρ€Ρ†Π΅Π²Ρ‹Ρ… ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ…. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ напылСния с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ распылСниСм слоя Π·ΠΎΠ»ΠΎΡ‚Π° Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 2–3 Π½ΠΌ позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ элСктричСскоС сопротивлСниС ΠΈ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚Π½ΡƒΡŽ ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… мСталличСских ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΏΠ»Π΅Π½ΠΊΠ°ΠΌΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Π±Π΅Π· Π΅Π΅ использования. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ измСрСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ коэффициСнта сопротивлСния ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΏΠ»Π΅Π½ΠΎΠΊ Π·ΠΎΠ»ΠΎΡ‚Π° Π½Π° ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅Π²Ρ‹Ρ… ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ напыляСмыС ΠΏΠ»Π΅Π½ΠΊΠΈ становятся ΡΠΏΠ»ΠΎΡˆΠ½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Π΅ 6–8 Π½ΠΌ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ оптичСских ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ ΠΏΠ»Π΅Π½ΠΎΠΊ Π·ΠΎΠ»ΠΎΡ‚Π° Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 10 Π½ΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π½Π° ΠΊΠ²Π°Ρ€Ρ†Π΅Π²Ρ‹Ρ… ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ…, ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ коэффициСнт отраТСния элСктромагнитного излучСния Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ‹ 850 Π½ΠΌ Π½Π° 2,8 % Π²Ρ‹ΡˆΠ΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ коэффициСнта для Ρ‚Π°ΠΊΠΈΡ… ΠΆΠ΅ ΠΏΠ»Π΅Π½ΠΎΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π±Π΅Π· использования Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, ΠΈ составляСт 83 %. Π’Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… слоСв Π·ΠΎΠ»ΠΎΡ‚Π° ΠΈΠ³Ρ€Π°ΡŽΡ‚ процСссы автооблучСния растущСго слоя высокоэнСргСтичСской ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ ΠΏΠΎΡ‚ΠΎΠΊΠ° Π°Ρ‚ΠΎΠΌΠΎΠ² Π·ΠΎΠ»ΠΎΡ‚Π°. ΠŸΡ€ΠΈ использовании Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ напылСния/распылСния происходит Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ Π² ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΡƒ высокоэнСргСтичСских Π°Ρ‚ΠΎΠΌΠΎΠ² Π·ΠΎΠ»ΠΎΡ‚Π° Π½Π° Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ Π΄ΠΎ 2 Π½ΠΌ. Π‘ ΠΎΠ΄Π½ΠΎΠΉ стороны, эти Π°Ρ‚ΠΎΠΌΡ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ источниками Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² Π² приповСрхностном Π½Π°Ρ€ΡƒΡˆΠ΅Π½Π½ΠΎΠΌ слоС ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ; Π° с Π΄Ρ€ΡƒΠ³ΠΎΠΉ – ΠΎΠ½ΠΈ слуТат Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ кластСрообразования. Π—Π° счСт этого обСспСчиваСтся высокая адгСзия слоя ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΊ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅, ΠΈ, ΠΊΠ°ΠΊ слСдствиС, ΠΏΠ»Π΅Π½ΠΊΠΈ Π·ΠΎΠ»ΠΎΡ‚Π° становятся ΡΠΏΠ»ΠΎΡˆΠ½Ρ‹ΠΌΠΈ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΎ микроструктурС. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΎΠ½Π½ΠΎ-Π»ΡƒΡ‡Π΅Π²ΠΎΠ³ΠΎ напылСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ для получСния качСствСнных проводящих оптичСски ΠΏΡ€ΠΎΠ·Ρ€Π°Ρ‡Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΏΠ»Π΅Π½ΠΎΠΊ Π·ΠΎΠ»ΠΎΡ‚Π°

    ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΏΡ€ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… болСзнях Π»Π΅Π³ΠΊΠΈΡ…: Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (ΠΎΠ±Π·ΠΎΡ€)

    Get PDF
    This literature review is devoted to the analysis of the role of macrophages in the immunopathogenesis of infectious lung diseases of bacterial etiology. The article summarizes information about the origin of macrophages, their phenotypic and functional heterogeneity. The mechanisms of impaired protective function of innate immunity are associated with the polarization of the program of maturation and activation of macrophages in the direction to tolerogenic or immunoregulatory cells with phenotype of M2. Alveolar macrophages perform a variety of functions (from pro-inflammatory to regenerative) in the development of inflammation in the respiratory organs. Their inherent plasticity suggests that the same macrophages can change their phenotype and function depending on the microenvironment in the inflammatory focus at different stages of the disease. Understanding the mechanisms that regulate macrophage plasticity will be an important step towards realizing the potential of personalized immunomodulatory therapy.ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ посвящСн Π°Π½Π°Π»ΠΈΠ·Ρƒ Ρ€ΠΎΠ»ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² Π² ΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π»Π΅Π³ΠΊΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ этиологии. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Ρ‹ свСдСния ΠΎ происхоТдСнии ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ², ΠΈΡ… фСнотипичСской ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ гСтСрогСнности. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚Π° связаны с поляризациСй ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ созрСвания ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Ρ‚ΠΎΠ»Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈΠ»ΠΈ иммунорСгуляторных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠΌ М2. ΠΠ»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (ΠΎΡ‚ ΠΏΡ€ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ) ΠΏΡ€ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ воспалСния Π² ΠΎΡ€Π³Π°Π½Π°Ρ… дыхания. ΠŸΡ€ΠΈΡΡƒΡ‰Π°Ρ ΠΈΠΌ ΠΏΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΈ ΠΈ Ρ‚Π΅ ΠΆΠ΅ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒ свой Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏ ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² зависимости ΠΎΡ‚ микроокруТСния Π² ΠΎΡ‡Π°Π³Π΅ воспалСния Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… стадиях заболСвания. ПониманиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ², станСт Π²Π°ΠΆΠ½Ρ‹ΠΌ шагом Π½Π° ΠΏΡƒΡ‚ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° пСрсонифицированной ΠΈΠΌΠΌΡƒΠ½ΠΎΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Бубпопуляции ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊΡ€ΠΎΠ²ΠΈ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ гипоксиСй

    Get PDF
    The aim of the work is to establish general regularities and features of differentiation of blood monocytes into 4 subpopulations in diseases associated with circulatory and respiratory hypoxia.Materials and methods. 18 patients with ischemic heart disease (IHD), 12 patients with ischemic cardiomyopathy (ICMP), 14 patients with chronic obstructive pulmonary disease (COPD), 15 patients with newly diagnosed infiltrative pulmonary tuberculosis (PTB) and 12 healthy donors were examined. In whole blood, we determined the relative number of different subpopulations of monocytes by flow cytometry. The results were analyzed by statistical methods.Results. It is shown that an increase in the number of classical (80.56 [77.60; 83.55]%) and the deficit of intermediate (10.38 [9.36; 11.26]%), non-classical (6.03 [5.24; 6.77]%) and transitional (2.14 [1.41; 3.92] %) monocytes in the blood is determined in patients with COPD when compared with the group of healthy donors (p < 0.05). In groups of patients with PTB and IHD, an increase in the number of intermediate monocytes (26.24 respectively [22.38; 42.88] % and 25.27 [15.78; 31.39]%) and the lack of transitional cells (1.77 [1.36; 3.74]% and 2.68 [2.63; 4.0]%) at the normal content of classical and non-classical forms of monocytes (p < 0.05) is detected. In patients with ICMP, a decrease in the number of non-classical monocytes (up to 5.05 [4.08; 6.58]%) is combined with the normal cell content of other subpopulations (p < 0.05). The interrelation between the number of classical and intermediate monocytes in patients with COPD (r = –0.63; p < 0.05), PTB (r = –0.72; p < 0.01), IHD (r = –0.59; p < 0.05), ICMP (r = –0.58; p < 0.05) was established.Conclusion. In COPD associated with generalized hypoxia, an increase in the number of classical monocytes is combined with a deficiency of their other subpopulations in the blood. In PTB and IHD, antigenic stimulation of the immune system mediates accelerated differentiation of monocytes from classical to intermediate forms with a decrease in the number of transitional cells regardless of the etiology of the disease (infectious or non-infectious) and the type of hypoxia (respiratory or circulatory).ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΎΠ±Ρ‰ΠΈΠ΅ закономСрности ΠΈ особСнности Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊΡ€ΠΎΠ²ΠΈ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ субпопуляции (классичСскиС (CD14hiCD16-), ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ (CD14hiCD16lo), нСклассичСскиС (CD14loCD16lo) ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Π΅ (CD14loCD16-)) ΠΏΡ€ΠΈ заболСваниях, ассоциированных с циркуляторной ΠΈ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ гипоксиСй.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ 18 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца (Π˜Π‘Π‘), 12 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ΠΊΠ°Ρ€Π΄ΠΈΠΎΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ (ИКМП), 14 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с хроничСской обструктивной болСзнью Π»Π΅Π³ΠΊΠΈΡ… (Π₯ΠžΠ‘Π›), 15 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ выявлСнным ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌ Ρ‚ΡƒΠ±Π΅Ρ€ΠΊΡƒΠ»Π΅Π·ΠΎΠΌ Π»Π΅Π³ΠΊΠΈΡ… (Π’Π‘Π›) ΠΈ 12 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ². Π’ Ρ†Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΡ€ΠΎΠ²ΠΈ опрСдСляли ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ количСство Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… субпопуляций ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ статистичСскими ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Показано, Ρ‡Ρ‚ΠΎ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π₯ΠžΠ‘Π› опрСдСляСтся ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΈ классичСских (80,56 [77,60; 83,55]%) ΠΈ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… (10,38 [9,36; 11,26]%), нСклассичСских (6,03 [5,24; 6,77]%) ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… (2,14 [1,41; 3,92]%) ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ½ΠΎΡ€ΠΎΠ² (Ρ€ < 0,05). Π’ Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π’Π‘Π› ΠΈ Π˜Π‘Π‘ обнаруТиваСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ количСства ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² (соотвСтствСнно 26,24 [22,38; 42,88]% ΠΈ 25,27 [15,78; 31,39]%) Π½Π° Ρ„ΠΎΠ½Π΅ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (1,77 [1,36; 3,74]% ΠΈ 2,68 [2,63; 4,0]%) ΠΏΡ€ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ содСрТании классичСских ΠΈ нСклассичСских Ρ„ΠΎΡ€ΠΌ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² (Ρ€ < 0,05). Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ИКМП сниТСниС числСнности нСклассичСских ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² (Π΄ΠΎ 5,05 [4,08; 6,58]%) сочСтаСтся с Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ содСрТаниСм ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… субпопуляций (Ρ€ < 0,05). УстановлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‡ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ классичСских ΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π₯ΠžΠ‘Π› (r = –0,63; p < 0,05), Π’Π‘Π› (r = –0,72; p < 0,01), Π˜Π‘Π‘ (r = –0,59; p < 0,05), ИКМП (r = –0,58; p < 0,05).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΈ Π₯ΠžΠ‘Π›, ассоциированной с Π³Π΅Π½Π΅Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ гипоксиСй, ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ числа классичСских ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² сочСтаСтся с Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ΠΎΠΌ ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΡ… субпопуляций Π² ΠΊΡ€ΠΎΠ²ΠΈ. ΠŸΡ€ΠΈ Π’Π‘Π› ΠΈ Π˜Π‘Π‘ антигСнная стимуляция ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы опосрСдуСт ΡƒΡΠΊΠΎΡ€Π΅Π½Π½ΡƒΡŽ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈΠ· классичСских Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΡ€ΠΈ сниТСнии числа ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Π½Π΅ зависимости ΠΎΡ‚ этиологии заболСвания (инфСкционная ΠΈΠ»ΠΈ нСинфСкционная) ΠΈ Π²ΠΈΠ΄Π° гипоксии (Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΈΠ»ΠΈ циркуляторная)

    Subpopulation structure of IFNΞ³-producing T lymphocytes in patients with pulmonary tuberculosis

    No full text
    The study of subpopulation structure of IFNΞ³-producing T cells in patients with pulmonary tuberculosis revealed a decrease in the number of CD3+ IFNΞ³+ cells against the background of significantly increased IFNΞ³ secretion in vitro irrespective of the clinical form of the disease and drug sensitivity of M. tuberculosis, most strongly expressed in case of the disseminated tuberculosis. In patients with infiltrative drug-sensitive and drug-resistant pulmonary tuberculosis, increased number of Th1/Th17 lymphocytes (CD4+ IFNΞ³+IL-17A+) and, conversely, decreased number of blood Ξ³Ξ΄T cells was detected

    Subpopulation structure of IFNΞ³-producing T lymphocytes in patients with pulmonary tuberculosis

    No full text
    The study of subpopulation structure of IFNΞ³-producing T cells in patients with pulmonary tuberculosis revealed a decrease in the number of CD3+ IFNΞ³+ cells against the background of significantly increased IFNΞ³ secretion in vitro irrespective of the clinical form of the disease and drug sensitivity of M. tuberculosis, most strongly expressed in case of the disseminated tuberculosis. In patients with infiltrative drug-sensitive and drug-resistant pulmonary tuberculosis, increased number of Th1/Th17 lymphocytes (CD4+ IFNΞ³+IL-17A+) and, conversely, decreased number of blood Ξ³Ξ΄T cells was detected

    STATE OF JNK AND P38 MAP-KINASE SYSTEM IN BLOOD monon uclea r le ucocytes DUR ING INFLAMMATION

    No full text
    Abstract. Pogrammed cell death of peripheral blood mononuclear leucocytes from patients with acute inflammatory diseases (non-nosocomial pneumonia, acute appendicitis) was investigated under ex vivo conditions, upon cultivation of the cells with selective inhibitors of JNK (SP600125) and Ρ€38 МАРК (ML3403). In vitro addition of SP600125 and ML3403 under oxidative stress conditions prevents increase of annexinpositive mononuclear cells numbers, thus suggesting JNK and Ρ€38 МАР-kinases to be involved into oxidative mechanisms of apoptosis deregulation. A role of JNK in IL-8 production by mononuclear leucocytes was revealed in cases of acute inflammation. Regulatory effect of JNK and p38 MAP-kinases can be mediated through activation of redox-sensitive apoptogenic signal transduction systems, as well as due to changes in cellular cytokine-producing function
    • …
    corecore