99 research outputs found
Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory
The technique used at the Sudbury Neutrino Observatory (SNO) to measure the
concentration of 222Rn in water is described. Water from the SNO detector is
passed through a vacuum degasser (in the light water system) or a membrane
contact degasser (in the heavy water system) where dissolved gases, including
radon, are liberated. The degasser is connected to a vacuum system which
collects the radon on a cold trap and removes most other gases, such as water
vapor and nitrogen. After roughly 0.5 tonnes of H2O or 6 tonnes of D2O have
been sampled, the accumulated radon is transferred to a Lucas cell. The cell is
mounted on a photomultiplier tube which detects the alpha particles from the
decay of 222Rn and its daughters. The overall degassing and concentration
efficiency is about 38% and the single-alpha counting efficiency is
approximately 75%. The sensitivity of the radon assay system for D2O is
equivalent to ~3 E(-15) g U/g water. The radon concentration in both the H2O
and D2O is sufficiently low that the rate of background events from U-chain
elements is a small fraction of the interaction rate of solar neutrinos by the
neutral current reaction.Comment: 14 pages, 6 figures; v2 has very minor change
Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations
Classical conformal blocks naturally appear in the large central charge limit
of 2D Virasoro conformal blocks. In the correspondence, they
are related to classical bulk actions and are used to calculate entanglement
entropy and geodesic lengths. In this work, we discuss the identification of
classical conformal blocks and the Painlev\'e VI action showing how
isomonodromic deformations naturally appear in this context. We recover the
accessory parameter expansion of Heun's equation from the isomonodromic
-function. We also discuss how the expansion of the
-function leads to a novel approach to calculate the 4-point classical
conformal block.Comment: 32+10 pages, 2 figures; v3: upgraded notation, discussion on moduli
space and monodromies, numerical and analytic checks; v2: added refs, fixed
emai
First Neutrino Observations from the Sudbury Neutrino Observatory
The first neutrino observations from the Sudbury Neutrino Observatory are
presented from preliminary analyses. Based on energy, direction and location,
the data in the region of interest appear to be dominated by 8B solar
neutrinos, detected by the charged current reaction on deuterium and elastic
scattering from electrons, with very little background. Measurements of
radioactive backgrounds indicate that the measurement of all active neutrino
types via the neutral current reaction on deuterium will be possible with small
systematic uncertainties. Quantitative results for the fluxes observed with
these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000
Conference, Sudbury, Canada, June 16-21, 2000 to be published in the
Proceeding
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Mapping Dirac quasiparticles near a single Coulomb impurity on graphene
The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant, which is the primary factor determining the strength of electron–electron interactions in graphene. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ε[subscript g] = 3.0±1.0. This small value of ε[subscript g] indicates that electron–electron interactions can contribute significantly to graphene properties.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1066)United States. Dept. of Energy. Office of Science (Contract DE-AC02-05CH11231)National Science Foundation (U.S.) (Award DMR-0906539
Mineralization of Acephate, a Recalcitrant Organophosphate Insecticide Is Initiated by a Pseudomonad in Environmental Samples
An aerobic bacterium capable of breaking down the pesticide acephate (O,S-dimethyl acetyl phosphoramidothioic acid) was isolated from activated sludge collected from a pesticide manufacturing facility. A phylogenetic tree based on the 16 S rRNA gene sequence determined that the isolate lies within the Pseudomonads. The isolate was able to grow in the presence of acephate at concentrations up to 80 mM, with maximum growth at 40 mM. HPLC and LC-MS/MS analysis of spent medium from growth experiments and a resting cell assay detected the accumulation of methamidophos and acetate, suggesting initial hydrolysis of the amide linkage found between these two moieties. As expected, the rapid decline in acephate was coincident with the accumulation of methamidophos. Methamidophos concentrations were maintained over a period of days, without evidence of further metabolism or cell growth by the cultures. Considering this limitation, strains such as described in this work can promote the first step of acephate mineralization in soil microbial communities
Plasma concentrations of soluble IL-2 receptor α (CD25) are increased in type 1 diabetes and associated with reduced C-peptide levels in young patients.
AIMS/HYPOTHESIS: Type 1 diabetes is a common autoimmune disease that has genetic and environmental determinants. Variations within the IL2 and IL2RA (also known as CD25) gene regions are associated with disease risk, and variation in expression or function of these proteins is likely to be causal. We aimed to investigate if circulating concentrations of the soluble form of CD25, sCD25, an established marker of immune activation and inflammation, were increased in individuals with type 1 diabetes and if this was associated with the concentration of C-peptide, a measure of insulin production that reflects the degree of autoimmune destruction of the insulin-producing beta cells. METHODS: We used immunoassays to measure sCD25 and C-peptide in peripheral blood plasma from patient and control samples. RESULTS: We identified that sCD25 was increased in patients with type 1 diabetes compared with controls and replicated this result in an independent set of 86 adult patient and 80 age-matched control samples (p = 1.17 × 10(-3)). In 230 patients under 20 years of age, with median duration-of-disease of 6.1 years, concentrations of sCD25 were negatively associated with C-peptide concentrations (p = 4.8 × 10(-3)). CONCLUSIONS/INTERPRETATION: The 25% increase in sCD25 in patients, alongside the inverse association between sCD25 and C-peptide, probably reflect the adverse effects of an on-going, actively autoimmune and inflammatory immune system on beta cell function in patients
- …