9 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Large-Scale Protein Annotation through Gene Ontology

    No full text
    Recent progress in genomic sequencing, computational biology, and ontology development has presented an opportunity to investigate biological systems from a unique perspective, that is, examining genomes and transcriptomes through the multiple and hierarchical structure of Gene Ontology (GO). We report here our development of GO Engine, a computational platform for GO annotation, and analysis of the resultant GO annotations of human proteins. Protein annotation was centered on sequence homology with GO-annotated proteins and protein domain analysis. Text information analysis and a multiparameter cellular localization predictive tool were also used to increase the annotation accuracy, and to predict novel annotations. The majority of proteins corresponding to full-length mRNA in GenBank, and the majority of proteins in the NR database (nonredundant database of proteins) were annotated with one or more GO nodes in each of the three GO categories. The annotations of GenBank and SWISS-PROT proteins are available to the public at the GO Consortium web site

    Transcription-mediated gene fusion in the human genome

    No full text
    Transcription of a gene usually ends at a regulated termination point, preventing the RNA-polymerase from reading through the next gene. However, sporadic reports suggest that chimeric transcripts, formed by transcription of two consecutive genes into one RNA, can occur in human. The splicing and translation of such RNAs can lead to a new, fused protein, having domains from both original proteins. Here, we systematically identified over 200 cases of intergenic splicing in the human genome (involving 421 genes), and experimentally demonstrated that at least half of these fusions exist in human tissues. We showed that unique splicing patterns dominate the functional and regulatory nature of the resulting transcripts, and found intergenic distance bias in fused compared with nonfused genes. We demonstrate that the hundreds of fused genes we identified are only a subset of the actual number of fused genes in human. We describe a novel evolutionary mechanism where transcription-induced chimerism followed by retroposition results in a new, active fused gene. Finally, we provide evidence that transcription-induced chimerism can be a mechanism contributing to the evolution of protein complexes

    ILDR2 is a novel B7-like protein that negatively regulates T cell responses

    No full text
    The B7-like protein family members play critical immunomodulatory roles and constitute attractive targets for the development of novel therapies for human diseases. We identified Ig-like domain-containing receptor (ILDR)2 as a novel B7-like protein with robust T cell inhibitory activity, expressed in immune cells and in immune-privileged and inflamed tissues. A fusion protein, consisting of ILDR2 extracellular domain with an Fc fragment, that binds to a putative counterpart on activated T cells showed a beneficial effect in the collagen-induced arthritis model and abrogated the production of proinflammatory cytokines and chemokines in autologous synovial-like cocultures of macrophages and cytokine-stimulated T cells. Collectively, these findings point to ILDR2 as a novel negative regulator for T cells, with potential roles in the development of immune-related diseases, including autoimmunity and cancer

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text
    corecore