64 research outputs found

    Fungal interactions with the human host: exploring the spectrum of symbiosis

    Get PDF
    Fungi are ubiquitous transient or persistent human colonisers, and form the mycobiome with shifts in niche specific mycobiomes (dysbiosis) being associated with various diseases. These complex interactions of fungal species with the human host can be viewed as a spectrum of symbiotic relationships (i.e. commensal, parasitic, mutualistic, amensalistic). The host relevant outcome of the relationship is the damage to benefit ratio, elegantly described in the damage response framework. This review focuses on Candida albicans, which is the most well studied human fungal symbiont clinically and experimentally, its transition from commensalism to parasitism within the human host, and the factors that influence this relationship

    Could an Unrelated Live Attenuated Vaccine Serve as a Preventive Measure To Dampen Septic Inflammation Associated with COVID-19 Infection?

    No full text
    We propose the concept that administration of an unrelated live attenuated vaccine, such as MMR (measles, mumps, rubella), could serve as a preventive measure against the worst sequelae of coronavirus disease 2019 (COVID-19). There is mounting evidence that live attenuated vaccines provide nonspecific protection against lethal infections unrelated to the target pathogen of the vaccine by inducing “trained” nonspecific innate immune cells for improved host responses against subsequent infections.We propose the concept that administration of an unrelated live attenuated vaccine, such as MMR (measles, mumps, rubella), could serve as a preventive measure against the worst sequelae of coronavirus disease 2019 (COVID-19). There is mounting evidence that live attenuated vaccines provide nonspecific protection against lethal infections unrelated to the target pathogen of the vaccine by inducing “trained” nonspecific innate immune cells for improved host responses against subsequent infections. Mortality in COVID-19 cases is strongly associated with progressive lung inflammation and eventual sepsis. Vaccination with MMR in immunocompetent individuals has no contraindications and may be especially effective for health care workers who can easily be exposed to COVID-19. Following the lead of other countries conducting clinical trials with the live attenuated Mycobacterium bovis BCG (BCG) vaccine under a similar concept, a clinical trial with MMR in high-risk populations may provide a “low-risk–high-reward” preventive measure in saving lives during this unprecedented COVID-19 pandemic

    Candida albicans and Staphylococcus aureus Form Polymicrobial Biofilms: Effects on Antimicrobial Resistanceâ–ż

    No full text
    Candida albicans readily forms biofilms on the surface on indwelling medical devices, and these biofilms serve as a source of local and systemic infections. It is estimated that 27% of nosocomial C. albicans bloodstream infections are polymicrobial, with Staphylococcus aureus as the third most common organism isolated in conjunction with C. albicans. We tested whether S. aureus and C. albicans are able to form a polymicrobial biofilm. Although S. aureus formed poor monoculture biofilms in serum, it formed a substantial polymicrobial biofilm in the presence of C. albicans. In terms of architecture, S. aureus formed microcolonies on the surface of the biofilm, with C. albicans serving as the underlying scaffolding. In addition, S. aureus matrix staining revealed a different phenotype in polymicrobial versus monomicrobial biofilms, suggesting that S. aureus may become coated in the matrix secreted by C. albicans. S. aureus resistance to vancomycin was enhanced within the polymicrobial biofilm, required viable C. albicans, and was in part mediated by C. albicans matrix. However, the growth or sensitivity to amphotericin B of C. albicans is not altered in the polymicrobial biofilm

    <i>Candida/Staphylococcal</i> Polymicrobial Intra-Abdominal Infection: Pathogenesis and Perspectives for a Novel Form of Trained Innate Immunity

    No full text
    Polymicrobial sepsis is difficult to diagnose and treat and causes significant morbidity and mortality, especially when fungi are involved. In vitro, synergism between Candida albicans and various bacterial species has been described for many years. Our laboratory has developed a murine model of polymicrobial intra-abdominal infection with Candida albicans and Staphylococcus aureus, demonstrating that polymicrobial infections cause high levels of mortality, while monoinfections do not. By contrast, closely related Candida dubliniensis does not cause synergistic lethality and rather provides protection against lethal polymicrobial infection. This protection is thought to be driven by a novel form of trained innate immunity mediated by myeloid-derived suppressor cells (MDSCs), which we are proposing to call &#8220;trained tolerogenic immunity&#8221;. MDSC accumulation has been described in patients with sepsis, as well as in in vivo sepsis models. However, clinically, MDSCs are considered detrimental in sepsis, while their role in in vivo models differs depending on the sepsis model and timing. In this review, we will discuss the role of MDSCs in sepsis and infection and summarize our perspectives on their development and function in the spectrum of trained innate immune protection against fungal-bacterial sepsis

    Production of Prostaglandins and Leukotrienes by Pathogenic Fungi

    No full text
    These studies demonstrate that pathogenic fungi (dermatophytic, subcutaneous, and systemic) have the ability to produce eicosanoids both from simple metabolites and from arachidonic acid. Host-derived eicosanoids have been previously demonstrated to enhance fungal colonization and atopic disease development. Thus, fungus-derived eicosanoids represent a potential class of novel virulence factors

    Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes

    No full text
    Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen “cross-talk” that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens
    • …
    corecore