967 research outputs found

    Exploring CSF neurofilament light as a biomarker for MS in clinical practice; a retrospective registry-based study

    Get PDF
    BACKGROUND: Neurofilament light (NFL) has been increasingly recognized for prognostic and therapeutic decisions. OBJECTIVE: To validate the utility of cerebrospinal fluid NFL (cNFL) as a biomarker in clinical practice of relapsing-remitting multiple sclerosis (RRMS). METHODS: RRMS patients (n = 757) who had cNFL analyzed as part of the diagnostic work-up in a single academic multiple sclerosis (MS) center, 2001–2018, were retrospectively identified. cNFL concentrations were determined with two different immunoassays and the ratio of means between them was used for normalization. RESULTS: RRMS with relapse had 4.4 times higher median cNFL concentration (1134 [interquartile range (IQR) 499–2744] ng/L) than those without relapse (264 [125–537] ng/L, p < 0.001) and patients with gadolinium-enhancing lesions had 3.3 times higher median NFL (1414 [606.8–3210] ng/L) than those without (426 [IQR 221–851] ng/L, p < 0.001). The sensitivity and specificity of cNFL to detect disease activity was 75% and 98.5%, respectively. High cNFL at MS onset predicted progression to Expanded Disability Status Scale (EDSS) ⩾ 3 (p < 0.001, hazard ratios (HR) = 1.89, 95% CI = 1.44–2.65) and conversion to secondary progressive MS (SPMS, p = 0.001, HR = 2.5, 95% CI = 1.4–4.2). CONCLUSIONS: cNFL is a robust and reliable biomarker of disease activity, treatment response, and prediction of disability and conversion from RRMS to SPMS. Our data suggest that cNFL should be included in the assessment of patients at MS-onset

    Recognition of Avirulence Gene AvrLm1 from Hemibiotrophic Ascomycete Leptosphaeria maculans Triggers Salicylic Acid and Ethylene Signaling in Brassica napus

    Get PDF
    Interaction of a plant with a fungal pathogen is an encounter with hundreds of molecules. In contrast to this, a single molecule often decides between the disease and resistance. In the present article, we describe the defense responses triggered by AvrLm1, an avirulence gene from a hemibiotrophic ascomycete, Leptosphaeria maculans, responsible for an incompatible interaction with Brassica napus. Using multiple hormone quantification and expression analysis of defense-related genes, we investigated signaling events in Rlm1 plants infected with two sister isolates of L. maculans differentiated by the presence or absence of AvrLm1. Infection with the isolate carrying AvrLm1 increased the biosynthesis of salicylic acid (SA) and induced expression of the SA-associated genes ICS1, WRKY70, and PR-1, a feature characteristic of responses to biotrophic pathogens and resistance gene-mediated resistance. In addition to SA-signaling elements, we also observed the induction of ASC2a, HEL, and CHI genes associated with ethylene (ET) signaling. Pharmacological experiments confirmed the positive roles of SA and ET in mediating resistance to L. maculans. The unusual cooperation of SA and ET signaling might be a response to the hemibiotrophic nature of L. maculans. Our results also demonstrate the profound difference between the natural host B. napus and the model plant Arabidopsis in their response to L. maculans infection

    Kappa free light chain index as a diagnostic biomarker in multiple sclerosis: a real-world investigation

    Get PDF
    Kappa free light chain (KFLC)-index, a measure for intrathecal production of free kappa chains, has been increasingly recognized for its diagnostic potential in multiple sclerosis (MS) as a quantitative alternative to IgG oligoclonal-bands (OCBs). Our objective was to investigate the sensitivity, specificity, and overall diagnostic accuracy of KFLC-index in MS. KFLC-index was prospectively determined as part of the diagnostic workup in patients with suspected MS (n=327) between May 2013 and February 2020. Patients with clinically isolated syndrome (CIS), radiologically isolated syndrome (RIS), and MS had markedly higher KFLC-index (44.6, IQR 16-128) compared with subjects with other neuro-inflammatory disorders (ONID) and symptomatic controls (SC) (2.19, IQR 1.68-2.98, pIF and better than for IgG-index. We show that KFLC-index was influenced neither by DMT, nor by demographic factors or other inflammatory or degenerative processes in MS as determined by biomarkers in CSF

    Vitamin c—sources, physiological role, kinetics, deficiency, use, toxicity, and determination

    Get PDF
    Vitamin C (L‐ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facili-tation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic processes. Contrarily, high doses act as a pro‐oxidant than an anti‐oxidant. This may also be the reason why plasma levels are meticulously regulated on the level of absorption and excretion in the kidney. Interestingly, most cells contain vitamin C in millimolar concentrations, which is much higher than its plasma concentrations, and compared to other vitamins. The role of vitamin C is well demonstrated by miscellaneous symptoms of its absence—scurvy. The only clini-cally well‐documented indication for vitamin C is scurvy. The effects of vitamin C administration on cancer, cardiovascular diseases, and infections are rather minor or even debatable in the general population. Vitamin C is relatively safe, but caution should be given to the administration of high doses, which can cause overt side effects in some susceptible patients (e.g., oxalate renal stones). Lastly, analytical methods for its determination with advantages and pitfalls are also discussed in this review

    Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing-remitting multiple sclerosis

    Get PDF
    Cerebrospinal fluid (CSF) biomarkers can reflect different aspects of the pathophysiology of relapsing-remitting multiple sclerosis (RRMS). Understanding the impact of different disease modifying therapies on the CSF biomarker profile may increase their implementation in clinical practice and their appropriateness for monitoring treatment efficacy. This study investigated the influence of first-line (interferon beta) and second-line (natalizumab) therapies on seven CSF biomarkers in RRMS and their correlation with clinical and radiological outcomes. We included 59 RRMS patients and 39 healthy controls. The concentrations of C-X-C motif chemokine 13 (CXCL13), C-C motif chemokine ligand 2 (CCL2), chitinase-3-like protein 1 (CHI3L1), glial fibrillary acidic protein, neurofilament light protein (NFL), and neurogranin were determined by ELISA, and chitotriosidase (CHIT1) was analyzed by spectrofluorometry. RRMS patients had higher levels of NFL, CXCL13, CHI3L1, and CHIT1 than controls (p < 0.001). Subgroup analysis revealed higher NFL, CXCL13 and CHIT1 levels in patients treated with first-line therapy compared to second-line therapy (p = 0.008, p = 0.001 and p = 0.026, respectively). NFL and CHIT1 levels correlated with relapse status, and NFL and CXCL13 levels correlated with the formation of new magnetic resonance imaging lesions. Furthermore, we found an association between inflammatory and degenerative biomarkers. The results indicate that CSF levels of NFL, CXCL13, CHI3L1, and CHIT1 correlate with the clinical and/or radiological disease activity, providing additional dimensions in the assessment of treatment efficacy

    Cerebrospinal fluid growth-associated protein 43 in multiple sclerosis

    Get PDF
    Neurodegeneration in multiple sclerosis (MS) correlates with disease progression and reparative processes may be triggered. Growth-associated protein 43 (GAP-43) exhibits induced expression during axonal growth and reduced expression during MS progression. We aimed to evaluate if GAP-43 can serve as a biomarker of regeneration in relapsing-remitting MS (RRMS) and whether disease-modifying therapies (DMTs) influence GAP-43 concentration in cerebrospinal fluid (CSF). GAP-43 was measured using an enzyme-linked immunosorbent assay in 105 MS patients (73 RRMS, 12 primary progressive MS, 20 secondary progressive MS) and 23 healthy controls (HCs). In 35 of the patients, lumbar puncture, clinical assessment, and magnetic resonance imaging was performed before initiation of therapeutic intervention, and at follow-up. CSF GAP-43 concentration was significantly lower in progressive MS compared with HCs (p = 0.004) and RRMS (p =  < 0.001) and correlated negatively with disability (p = 0.026). However, DMTs did not alter CSF GAP-43. Interestingly, in RRMS CSF GAP-43 levels were higher in patients with signs of active inflammatory disease than in patients in remission (p = 0.042). According to CSF GAP-43 concentrations, regeneration seems reduced in progressive MS, increased during disease activity in RRMS but is unaffected by treatment of highly active DMTs

    Tissue‐engineered tendon constructs for rotator cuff repair in sheep

    Full text link
    Current rotator cuff repair commonly involves the use of single or double row suture techniques, and despite successful outcomes, failure rates continue to range from 20 to 95%. Failure to regenerate native biomechanical properties at the enthesis is thought to contribute to failure rates. Thus, the need for technologies that improve structural healing of the enthesis after rotator cuff repair is imperative. To address this issue, our lab has previously demonstrated enthesis regeneration using a tissue‐engineered graft approach in a sheep anterior cruciate ligament (ACL) repair model. We hypothesized that our tissue‐engineered graft designed for ACL repair also will be effective in rotator cuff repair. The goal of this study was to test the efficacy of our Engineered Tissue Graft for Rotator Cuff (ETG‐RC) in a rotator cuff tear model in sheep and compare this novel graft technology to the commonly used double row suture repair technique. Following a 6‐month recovery, the grafted and contralateral shoulders were removed, imaged using X‐ray, and tested biomechanically. Additionally, the infraspinatus muscle, myotendinous junction, enthesis, and humeral head were preserved for histological analysis of muscle, tendon, and enthesis structure. Our results showed that our ETC‐RCs reached 31% of the native tendon tangent modulus, which was a modest, non‐significant, 11% increase over that of the suture‐only repairs. However, the histological analysis showed the regeneration of a native‐like enthesis in the ETG‐RC‐repaired animals. This advanced structural healing may improve over longer times and may diminish recurrence rates of rotator cuff tears and lead to better clinical outcomes. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:289–299, 2018.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142510/1/jor23642.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142510/2/jor23642_am.pd

    Spectroscopic, Morphological and Mechanistic Investigation of the Solvent.Promoted Aggregation of Porphyrins Modified in meso-positions by Glucosylated steroids

    Get PDF
    Solvent-driven aggregation of a series of porphyrin derivatives was studied by UV/Vis and circular dichroism spectroscopy. The porphyrins are characterised by the presence in the meso positions of steroidal moieties further conjugated with glucosyl groups. The presence of these groups makes the investigated macrocycles amphiphilic and soluble in aqueous solvent, namely, dimethyl acetamide/ water. Aggregation of the macrocycles is triggered by a change in bulk solvent composition leading to formation of large architectures that express supramolecular chirality, steered by the presence of the stereogenic centres on the periphery of the macrocycles. The aggregation behaviour and chiroptical features of the aggregates are strongly dependent on the number of moieties decorating the periphery of the porphyrin framework. In particular, experimental evidence indicates that the structure of the steroid linker dictates the overall chirality of the supramolecular architectures. Moreover, the porphyrin concentration strongly affects the aggregation mechanism and the CD intensities of the spectra. Notably, AFM investigations reveal strong differences in aggregate morphology that are dependent on the nature of the appended functional groups, and closely in line with the changes in aggregation mechanism. The suprastructures formed at lower concentration show a network of long fibrous structures spanning over tens of micrometres, whereas the aggregates formed at higher concentration have smaller rodshaped structures that can be recognised as the result of coalescence of smaller globular structures. The fully steroid substituted derivative forms globular structures over the whole concentration range explored. Finally, a rationale for the aggregation phenomena was given by semiempirical calculations at the PM6 level

    ПЕРЕБУДОВА ХІМІЧНОГО СКЛАДУ КІСТКОВОЇ ТКАНИНИ У ВІКОВОМУ АСПЕКТІ ЗА РІЗНИХ РЕЖИМІВ РУХОВОЇ АКТИВНОСТІ

    Get PDF
    A deep study of the adjustment processes of bone, its structure, chemical composition, adaptive capacity is a necessary condition for clarifi cation of the infl uence of labor, sports and a number of trades that occur in connection with the scientifi c and technical progress on the body. Simulation of the diff erent modes of motor activity does not fully meet the training process rights in physical education and sport. However, the results obtained in this pilot study are related to the disclosure of general biological laws based on individual and genetically determined characteristics of individuals, knowledge of which will serve as a morphological substantiation of the training process and prediction of structural changes in the skeleton at various modes of physical activity, injury prevention, and the development of osteoporosis.Глубокое изучение процессов перестройки костной ткани, ее строения, химического состава, адаптационных возможностей является необходимым условием выявления закономерностей влияния труда, спорта и ряда профессий, возникающих в связи с научно-техническим прогрессом на организм. Моделирование различных режимов двигательной активности в полной мере соответствует тренировочным процессам человека в физической культуре и спорте. Однако результаты, полученные при данном экспериментальном исследовании, имеют отношение к раскрытию общебиологических закономерностей, основанных на индивидуальных и генетически обусловленных особенностях индивидуумов, знание которых послужит морфологическим обоснованием тренировочного процесса и прогнозированию структурных преобразований в скелете при различных режимах двигательной активности, предотвращению травм и развития остеопороза.Глибоке вивчення процесів перебудови кісткової тканини, її будови, хімічного складу, адаптаційних можливостей є необхідною умовою виявлення закономірностей впливу праці, спорту та ряду професій, що виникають у зв’язку з науково-технічним прогресом, на організм. Моделювання різних режимів рухової активності не в повній мірі відповідає тренувальним процесам людини у фізичній культурі та спорті. Однак результати, отримані при даному експериментальному дослідженні, мають відношення до розкриття загальнобіологічних закономірностей, що ґрунтуються на індивідуальних і генетично обумовлених особливостях індивідуумів, знання котрих послужить морфологічним обґрунтуванням тренувального процесу і прогнозуванню структурних перетворень в скелеті при різних режимах рухової активності, запобіганню травм та розвитку остеопорозу

    Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer's disease

    Get PDF
    One undescribed indole alkaloid together with twenty-two known compounds have been isolated from aerial parts of Vinca minor L. (Apocynaceae). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. The NMR data of several alkaloids have been revised, corrected, and missing data have been supplemented. Alkaloids isolated in sufficient quantity were screened for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibitory activity. Selected compounds were also evaluated for prolyl oligopeptidase (POP; E.C. 3.4.21.26), and glycogen synthase 3β-kinase (GSK-3β; E.C. 2.7.11.26) inhibition potential. Significant hBuChE inhibition activity has been shown by (−)-2-ethyl-3[2-(3-ethylpiperidinyl)-ethyl]-1H-indole with an IC50 value of 0.65 ± 0.16 μM. This compound was further studied by enzyme kinetics, along with in silico techniques, to reveal the mode of inhibition. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion
    corecore