62 research outputs found

    Seamlessly Editing the Web

    Get PDF
    The typical process of editing content on the web is strongly moded. Authors are forced to switch between editing and previewing and publishing modes before, during, and after the editing process. This thesis explores a new paradigm of editing content on the web called seamless editing. Unlike existing techniques for editing content on the web, seamless editing is modeless, enabling authors to directly edit content on web pages without the need to switch between any modes. The absence of modes reduces the amount of cognitive complexity involved with the editing process. A software framework called Seaweed was developed for providing seamlessly editable web pages in any common web browser, and is shown that it can be integrated into any content management system. For the purposes of experimentation, the content management system WordPress was selected, and a plugin using the Seaweed framework developed for it that provided a seamlessly editable environment. Two experiments were conducted. The first study observed users with no or minimal experience with using WordPress, following a set of prescribed tasks, both with and without the plugin. The second study was conducted over a longer time period in a real-world context, where existing WordPress users were naturally observed using the plugin within their own blogs. Analysis of logged interactions and pre-questionnaires and post-questionnaires showed that, in both studies, the participants found the Seaweed software to be intuitive and the new way of editing content to be easily adaptable. Additionally, the analysis showed that the participants found the concept of seamless editing to be useful, and could see it being useful in many other contexts, other than blogs

    A Comparison of Muscle Recruitment Across Three Straight-Legged, Hinge-Pattern Resistance Training Exercises

    Get PDF
    International Journal of Exercise Science 16(4): 12-22, 2023. Hinge exercises are critical to building a balanced resistance training program in concert with ‘knee-dominant’ (e.g., squat, lunge) exercises. Biomechanical differences between various straight-legged hinge (SLH) exercises may alter muscle activation. For example, a Romanian deadlift (RDL) is a closed-chain SLH, while a reverse hyperextension (RH) is open-chain. Likewise, the RDL offers resistance via gravity while the cable pull-through (CP) offers redirected-resistance through a pulley. A deeper understanding of the potential impact of these biomechanical differences between these exercises may improve their application to specific goals. Participants completed repetition-maximum (RM) testing on the RDL, RH, and CP. On a follow-up visit, surface electromyography of the longissimus, multifidus, gluteus maximus, semitendinosus, and biceps femoris, muscles that contribute to lumbar/hip extension, was recorded. After a warm-up, participants completed maximal voluntary isometric contractions (MVICs) in each muscle. They then completed five repetitions of the RDL, RH, and CP at 50% of estimated one RM. Testing order was randomized. A one-way, repeated-measures ANOVA test was used in each muscle to compare activation (%MVIC) across the three exercises. Shifting from a gravity- (RDL) to a redirected-resistance (CP) SLH significantly decreased activation in the longissimus (-11.0%), multifidus (-14.1%), biceps femoris (-13.1%), and semitendinosus (-6.8%). Alternately, changing from a closed- (RDL) to an open-chain (RH) SLH significantly increased activation in the gluteus maximus (+19.5%), biceps femoris (+27.9%), and semitendinosus (+18.2). Alterations in the execution of a SLH can change muscle activation in lumbar/hip extensors

    pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner

    Get PDF
    Activation of the serine-threonine kinase Akt promotes the survival and proliferation of various cancers. Hypoxia promotes the resistance of tumor cells to specific therapies. We therefore explored a possible link between hypoxia and Akt activity. We found that Akt was prolyl-hydroxylated by the oxygen-dependent hydroxylase EglN1. The von Hippel–Lindau protein (pVHL) bound directly to hydroxylated Akt and inhibited Akt activity. In cells lacking oxygen or functional pVHL, Akt was activated to promote cell survival and tumorigenesis. We also identified cancer-associated Akt mutations that impair Akt hydroxylation and subsequent recognition by pVHL, thus leading to Akt hyperactivation. Our results show that microenvironmental changes, such as hypoxia, can affect tumor behaviors by altering Akt activation, which has a critical role in tumor growth and therapeutic resistance

    Reduced contextually induced muscle thermogenesis in rats with calorie restriction and lower aerobic fitness but not monogenic obesity

    Get PDF
    We have previously identified predator odor as a potent stimulus activating thermogenesis in skeletal muscle in rats. As this may prove relevant for energy balance and weight loss, the current study investigated whether skeletal muscle thermogenesis was altered with negative energy balance, obesity propensity seen in association with low intrinsic aerobic fitness, and monogenic obesity. First, weight loss subsequent to three weeks of 50% calorie restriction suppressed the muscle thermogenic response to predator odor. Next, we compared rats bred based on artificial selection for intrinsic aerobic fitness—high- and low-capacity runners (HCR, LCR)—that display robust leanness and obesity propensity, respectively. Aerobically fit HCR showed enhanced predator odor-induced muscle thermogenesis relative to the less-fit LCR. This contrasted with the profound monogenic obesity displayed by rats homozygous for a loss of function mutation in Melanocortin 4 receptor (Mc4rK314X/K314X rats), which showed no discernable deficit in thermogenesis. Taken together, these data imply that body size or obesity per se are not associated with deficient muscle thermogenesis. Rather, the physiological phenotype associated with polygenic obesity propensity may encompass pleiotropic mechanisms in the thermogenic pathway. Adaptive thermogenesis associated with weight loss also likely alters muscle thermogenic mechanisms.</p

    It Pays to Prepare: Human Motor Preparation Depends on the Relative Value of Potential Response Options

    Get PDF
    Alternative motor responses can be prepared in parallel. Here, we used electroencephalography (EEG) to test whether the parallel preparation of alternative response options is modulated by their relative value. Participants performed a choice response task with three potential actions: isometric contraction of the left, the right, or both wrists. An imperative stimulus (IS) appeared after a warning cue, such that the initiation time of a required action was predictable, but the specific action was not. To encourage advanced preparation, the target was presented 200 ms prior to the IS, and only correct responses initiated within ±100 ms of the IS were rewarded. At baseline, all targets were equally rewarded and probable. Then, responses with one hand were made more valuable, either by increasing the probability that the left or right target would be required (Exp. 1; n = 31) or by increasing the reward magnitude of one target (Exp. 2, n = 36). We measured reaction times, movement vigor, and an EEG correlate of action preparation (value-based lateralized readiness potential) prior to target presentation. Participants responded earlier to more frequent and more highly rewarded targets, and movements to highly rewarded targets were more vigorous. The EEG was more negative over the hemisphere contralateral to the more repeated/rewarded hand, implying an increased neural preparation of more valuable actions. Thus, changing the value of alternative response options can lead to greater preparation of actions associated with more valuable outcomes. This preparation asymmetry likely contributes to behavioral biases that are typically observed toward repeated or rewarded targets

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Seamless web editing for curated content

    No full text
    In this paper we present a new framework for editing that we have called Seaweed (short for seamless web editing) which enables authors to directly edit content on web pages within any common web browser—much like a word-processor—without the need of switching between modes. There are numerous ways to utilise the technique. This article reports on work integrating it with blogging software to support the direct creation and editing of curated content, and its subsequent evaluation through two field trials
    • 

    corecore