42 research outputs found

    Real-time photo-magnetic imaging.

    No full text

    Tomographie optique diffuse et de fluorescence préclinique : instrumentation sans contact, modélisation et reconstruction 3D résolue en temps.

    No full text
    Time-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological parameters. Time-Resolved Fluorescence Diffuse Optical Tomography (TR-FDOT) is based on the detection of fluorescence photons. It provides spatio-temporal maps of fluorescent probe concentrations and life times, and allows access to metabolic and molecular imaging which is important for diagnosis and therapeutic monitoring, particularly in oncology. The main goal of this thesis was to reconstruct 3D TR-DOT/TR-FDOT images of small animals using time-resolved optical technology. Data were acquired using optical fibers fixed around the animal without contact with its surface. The work was achieved in four steps: 1- Setting up an imaging device to record the 3D coordinates of an animal's surface, 2- Modeling the no-contact approach to solve the forward problem, 3- Processing of the measured signals taking into account the impulse response of the device, 4- Implementation of a new image reconstruction method based on a selection of carefully chosen points. As a result, good-quality 3D optical images were obtained owing to reduced cross-talk between absorption and scattering. Moreover, the computation time was cut down, compared to full-time methods using whole temporal profiles.La Tomographie Optique Diffuse Résolue en Temps (TOD-RT) est une technique d'imagerie clinique et préclinique en pleine croissance. Elle fournit les cartes d'absorption et de diffusion optique des organes explorés, et les paramètres physiologiques associés. La Tomographie Optique Diffuse de Fluorescence Résolue en Temps (TODF-RT) est basée sur la détection de photons de fluorescence. Elle permet de déterminer les cartes de la concentration et du temps de vie de sondes fluorescentes et d'accéder à une imagerie métabolique et moléculaire très importante pour le diagnostic et le suivi thérapeutique, en particulier en cancérologie. L'objectif de cette thèse était de réaliser des images 3D de TOD/TODF-RT sur des rongeurs en utilisant une technologie optique résolue en temps, les acquisitions étant réalisées à l'aide de fibres optiques disposées autour de l'animal et sans contact avec sa surface. Le travail a été mené en quatre étapes : 1- mise en place d'un dispositif d'imagerie de la surface de l'animal et reconstruction de son contour 3D, 2- modélisation de l'approche sans contact pour la résolution du problème direct, 3- traitement des mesures prenant en compte la réponse impulsionnelle de l'appareil, 4- établissement d'une méthode de reconstruction des images basée sur une sélection de points judicieusement choisis sur les profils temporels. Ces travaux ont permis d'obtenir des images optiques 3D de bonne qualité en réduisant la diaphonie entre l'absorption et la diffusion. Ces améliorations ont été obtenues tout en diminuant le temps de calcul, par comparaison avec les méthodes utilisant la totalité des profils temporels

    Preclinical, fluorescence and diffuse optical tomography,non-contact instrumentation, modeling and time-resolved 3D reconstruction

    No full text
    La Tomographie Optique Diffuse Résolue en Temps (TOD-RT) est une technique d'imagerie clinique et préclinique en pleine croissance. Elle fournit les cartes d'absorption et de diffusion optique des organes explorés, et les paramètres physiologiques associéTime-Resolved Diffuse Optical Tomography (TR-DOT) is a new non-invasive imaging technique increasingly used in the clinical and preclinical fields. It yields optical absorption and scattering maps of the explored organs, and related physiological paramet

    Real-time photo-magnetic imaging

    No full text
    We previously introduced a new high resolution diffuse optical imaging modality termed, photo-magnetic imaging (PMI). PMI irradiates the object under investigation with near-infrared light and monitors the variations of temperature using magnetic resonance thermometry (MRT). In this paper, we present a real-time PMI image reconstruction algorithm that uses analytic methods to solve the forward problem and assemble the Jacobian matrix much faster. The new algorithm is validated using real MRT measured temperature maps. In fact, it accelerates the reconstruction process by more than 250 times compared to a single iteration of the FEM-based algorithm, which opens the possibility for the real-time PMI

    Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography.

    No full text
    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed "temperature-modulated fluorescence tomography" (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40  mm×W:100  mm) is recovered as an elongated object in the conventional FT (x=4.5  mm; y=10.4  mm), while TM-FT recovers it successfully in both directions (x=3.8  mm; y=4.6  mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT
    corecore