6 research outputs found

    Process for the production of methacrylic acid

    No full text
    Disclosed is a method of making methacrylic acid, or a carboxylic derivative thereof, from itaconic acid, isomers, or precursors thereof. A starting material comprising an acid selected from the group consisting of itaconic acid, citraconic acid, mesaconic acid, citric acid, aconitic acid, isocitric acid and mixtures thereof, is subjected to contact with 0.1 eq. to 3.0 eq. of a base, at a temperature of 150°C to 350°C, under the influence of a transition metal-containing heterogeneous catalyst. A better yield at lower temperatures is achieved

    In Situ Generation of Ru-Based Metathesis Catalyst. A Systematic Study

    Get PDF
    International audienceA systematic study for the in situ generation of Ru-based metathesis catalysts was described. Assembly of commercially available and inexpensive reagents [Ru(p-cymene)Cl-2](2), SIPr center dot HCl, and n-BuLi led to the formation of 18 electron arene-ruthenium complexes that, in the presence of additives such as alkynes, cyclopropenes, and diazoesters, generated highly selective and efficient catalytic systems applicable to a variety of olefin metathesis transformations. Notably, we were able to achieve a productive TON of 4500 for the self-metathesis of methyl oleate, a reaction which could be easily upscaled to 2 kg

    Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

    No full text
    Amino acids are potential substrates to replace fossil feedstocks for the synthesis of nitriles via oxidative decarboxylation using vanadium chloroperoxidase (VCPO), H2O2 and bromide. Here the conversion of glutamic acid (Glu) and aspartic acid (Asp) was investigated. It was observed that these two chemically similar amino acids have strikingly different reactivity. In the presence of catalytic amounts of NaBr (0.1 equiv.), Glu was converted with high selectivity to 3-cyanopropanoic acid. In contrast, under the same reaction conditions Asp showed low conversion and selectivity towards the nitrile, 2-cyanoacetic acid (AspCN). It was shown that only by increasing the amount of NaBr present in the reaction mixture (from 0.1 to 2 equiv.), could the conversion of Asp be increased from 15% to 100% and its selectivity towards AspCN from 45% to 80%. This contradicts the theoretical hypothesis that bromide is recycled during the reaction. NaBr concentration was found to have a major influence on reactivity, independent of ionic strength of the solution. NaBr is involved not only in the formation of the reactive Br+ species by VCPO, but also results in the formation of potential intermediates which influences reactivity. It was concluded that the difference in reactivity between Asp and Glu must be due to subtle differences in inter- and intramolecular interactions between the functionalities of the amino acids.</p

    Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

    No full text
    Amino acids are potential substrates to replace fossil feedstocks for the synthesis of nitriles via oxidative decarboxylation using vanadium chloroperoxidase (VCPO), H2O2 and bromide. Here the conversion of glutamic acid (Glu) and aspartic acid (Asp) was investigated. It was observed that these two chemically similar amino acids have strikingly different reactivity. In the presence of catalytic amounts of NaBr (0.1 equiv.), Glu was converted with high selectivity to 3-cyanopropanoic acid. In contrast, under the same reaction conditions Asp showed low conversion and selectivity towards the nitrile, 2-cyanoacetic acid (AspCN). It was shown that only by increasing the amount of NaBr present in the reaction mixture (from 0.1 to 2 equiv.), could the conversion of Asp be increased from 15% to 100% and its selectivity towards AspCN from 45% to 80%. This contradicts the theoretical hypothesis that bromide is recycled during the reaction. NaBr concentration was found to have a major influence on reactivity, independent of ionic strength of the solution. NaBr is involved not only in the formation of the reactive Br+ species by VCPO, but also results in the formation of potential intermediates which influences reactivity. It was concluded that the difference in reactivity between Asp and Glu must be due to subtle differences in inter- and intramolecular interactions between the functionalities of the amino acids.</p

    Endocrine activities of phthalate alternatives; Assessing the safety profile of furan dicarboxylic acid esters using a panel of human cell based reporter gene assays

    No full text
    FDCA esters are highly relevant biobased alternatives for currently used benzene dicarboxylic acid esters. Despite all the developments on 2,5-FDCA applications, to the best of our knowledge thus far no toxicological data were available for 2,5-FDCA esters. In the present study we aimed to fill this gap, by using an in vitro reporter gene assay approach to compare the activity profile of commonly used phthalates to that of their furan-based counterparts. The assay selection was aimed at the detection of endocrine activity, since several phthalates are heavily scrutinised for their endocrine disrupting properties. However, to avoid missing other relevant toxicological endpoints, several assays able to detect various forms of cellular stress were also included in the panel. The results showed that the (ortho)benzene dicarboxylic acid esters were predominantly active on several of the endocrine assays. In comparison, six of the seven furan dicarboxylic acid based diesters tested here showed no activity in any of the 13 assays used. Only the isobutyl derivative DIBF showed moderate estrogenic activity on one assay, compared to much more pronounced activities on four assays for the ortho-phthalate analogue. Overall, the results presented in this paper are a strong indication that 2,5-FDCA based diesters in general are not only technically viable alternatives to phthalates, but also offer significant toxicological benefits, which supports a non-regrettable substitution

    Endocrine activities of phthalate alternatives; Assessing the safety profile of furan dicarboxylic acid esters using a panel of human cell based reporter gene assays

    No full text
    FDCA esters are highly relevant biobased alternatives for currently used benzene dicarboxylic acid esters. Despite all the developments on 2,5-FDCA applications, to the best of our knowledge thus far no toxicological data were available for 2,5-FDCA esters. In the present study we aimed to fill this gap, by using an in vitro reporter gene assay approach to compare the activity profile of commonly used phthalates to that of their furan-based counterparts. The assay selection was aimed at the detection of endocrine activity, since several phthalates are heavily scrutinised for their endocrine disrupting properties. However, to avoid missing other relevant toxicological endpoints, several assays able to detect various forms of cellular stress were also included in the panel. The results showed that the (ortho)benzene dicarboxylic acid esters were predominantly active on several of the endocrine assays. In comparison, six of the seven furan dicarboxylic acid based diesters tested here showed no activity in any of the 13 assays used. Only the isobutyl derivative DIBF showed moderate estrogenic activity on one assay, compared to much more pronounced activities on four assays for the ortho-phthalate analogue. Overall, the results presented in this paper are a strong indication that 2,5-FDCA based diesters in general are not only technically viable alternatives to phthalates, but also offer significant toxicological benefits, which supports a non-regrettable substitution.</p
    corecore