1,425 research outputs found

    Exact Requirements Engineering for Developing Business Process Models

    Full text link
    Process modeling is a suitable tool for improving the business processes. Successful process modeling strongly depends on correct requirements engineering. In this paper, we proposed a combination approach for requirements elicitation for developing business models. To do this, BORE (Business-Oriented Requirements Engineering) method is utilized as the base of our work and it is enriched by the important features of the BDD (Business-driven development) method, in order to make the proposed approach appropriate for modeling the more complex processes. As the main result, our method eventuates in exact requirements elicitation that adapts the customers' needs. Also, it let us avoid any rework in the modeling of process. In this paper, we conduct a case study for the paper submission and publication system of a journal. The results of this study not only give a good experience of real world application of proposed approach on a web-based system, also it approves the proficiency of this approach for modeling the complex systems with many sub-processes and complicated relationships.Comment: (IEEE) 3th International Conference on Web Researc

    Multi-stage Antenna Selection for Adaptive Beamforming in MIMO Arrays

    Full text link
    Increasing the number of transmit and receive elements in multiple-input-multiple-output (MIMO) antenna arrays imposes a substantial increase in hardware and computational costs. We mitigate this problem by employing a reconfigurable MIMO array where large transmit and receive arrays are multiplexed in a smaller set of k baseband signals. We consider four stages for the MIMO array configuration and propose four different selection strategies to offer dimensionality reduction in post-processing and achieve hardware cost reduction in digital signal processing (DSP) and radio-frequency (RF) stages. We define the problem as a determinant maximization and develop a unified formulation to decouple the joint problem and select antennas/elements in various stages in one integrated problem. We then analyze the performance of the proposed selection approaches and prove that, in terms of the output SINR, a joint transmit-receive selection method performs best followed by matched-filter, hybrid and factored selection methods. The theoretical results are validated numerically, demonstrating that all methods allow an excellent trade-off between performance and cost.Comment: Submitted for publicatio

    Validating and controlling quantum enhancement against noise by the motion of a qubit

    Get PDF
    Experimental validation and control of quantum traits for an open quantum system are important for any quantum information purpose. We consider a traveling atom qubit as a quantum memory with adjustable velocity inside a leaky cavity, adopting a quantum witness as a figure of merit for quantumness assessment. We show that this model constitutes an inherent physical instance where the quantum witness does not work properly if not suitably optimized. We then supply the optimal intermediate blind measurements which make the quantum witness a faithful tester of quantum coherence. We thus find that larger velocities protect quantumness against noise, leading to a lifetime extension of hybrid qubit-photon entanglement and to higher phase estimation precision. Control of qubit motion thus reveals itself as a quantum enhancer

    Back-to-back aperture- and gap-coupled discontinuities integration for band-pass filter design

    Get PDF
    A new class of back-to-back integrated aperture- and gap-coupled discontinuities is proposed for substrate-integrated waveguide band-pass filter design. The developed structure is shown to take advantage of both discontinuities in the design of cavity and/or planar resonators with an optimum performance including higher quality factor accompanied by transmission zero realisation, wider upper stop-band with second harmonic suppression, and a considerable size reduction. The measured unloaded quality factor has been increased by a ratio of 60% in comparison to the conventional gap-coupled structures

    Secrecy Enhancement in Cooperative Relaying Systems

    Get PDF
    Cooperative communications is obviously an evolution in wireless networks due to its noticeable advantages such as increasing the coverage as well as combating fading and shadowing effects. However, the broadcast characteristic of a wireless medium which is exploited in cooperative communications leads to a variety of security vulnerabilities. As cooperative communication networks are globally expanded, they expose to security attacks and threats more than ever. Primarily, researchers have focused on upper layers of network architectures to meet the requirements for secure cooperative transmission while the upper-layer security solutions are incapable of combating a number of security threats, e.g., jamming attacks. To address this issue, physical-layer security has been recommended as a complementary solution in the literature. In this thesis, physical layer attacks of the cooperative communication systems are studied, and corresponding security techniques including cooperative jamming, beamforming and diversity approaches are investigated. In addition, a novel security solution for a two-hop decode-and-forward relaying system is presented where the transmitters insert a random phase shift to the modulated data of each hop. The random phase shift is created based on a shared secret among communicating entities. Thus, the injected phase shift confuses the eavesdropper and secrecy capacity improves. Furthermore, a cooperative jamming strategy for multi-hop decode-and-forward relaying systems is presented where multiple non-colluding illegitimate nodes can overhear the communication. The jamming signal is created by the transmitter of each hop while being sent with the primary signal. The jamming signal is known at the intended receiver as it is according to a secret common knowledge between the communicating entities. Hence, artificial noise misleads the eavesdroppers, and decreases their signal-to-noise-ratio. As a result, secrecy capacity of the system is improved. Finally, power allocation among friendly jamming and main signal is proposed to ensure that suggested scheme enhances secrecy

    Quantumness and memory of one qubit in a dissipative cavity under classical control

    Get PDF
    Hybrid quantum–classical systems constitute a promising architecture for useful control strategies of quantum systems by means of a classical device. Here we provide a comprehensive study of the dynamics of various manifestations of quantumness with memory effects, identified by non-Markovianity, for a qubit controlled by a classical field and embedded in a leaky cavity. We consider both Leggett–Garg inequality and quantum witness as experimentally-friendly indicators of quantumness, also studying the geometric phase of the evolved (noisy) quantum state. We show that, under resonant qubit-classical field interaction, a stronger coupling to the classical control leads to enhancement of quantumness despite a disappearance of non-Markovianity. Differently, increasing the qubit-field detuning (out-of-resonance) reduces the nonclassical behavior of the qubit while recovering non-Markovian features. We then find that the qubit geometric phase can be remarkably preserved irrespective of the cavity spectral width via strong coupling to the classical field. The controllable interaction with the classical field inhibits the effective time-dependent decay rate of the open qubit. These results supply practical insights towards a classical harnessing of quantum properties in a quantum information scenari
    corecore