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Abstract

Hybrid quantum-classical systems constitute a promising architecture for useful control
strategies of quantum systems by means of a classical device. Here we provide a com-
prehensive study of the dynamics of various manifestations of quantumness with memory
effects, identified by non-Markovianity, for a qubit controlled by a classical field and em-
bedded in a leaky cavity. We consider both Leggett-Garg inequality and quantum witness
as experimentally-friendly indicators of quantumness, also studying the geometric phase
of the evolved (noisy) quantum state. We show that, under resonant qubit-classical field in-
teraction, a stronger coupling to the classical control leads to enhancement of quantumness
despite a disappearance of non-Markovianity. Differently, increasing the qubit-field de-
tuning (out-of-resonance) reduces the nonclassical behavior of the qubit while recovering
non-Markovian features. We then find that the qubit geometric phase can be remarkably
preserved irrespective of the cavity spectral width via strong coupling to the classical field.
The controllable interaction with the classical field inhibits the effective time-dependent
decay rate of the open qubit. These results supply practical insights towards a classical
harnessing of quantum properties in a quantum information scenario.

Keywords: Open quantum systems, Classical control, Leggett-Garg Inequality, Quantum
witness, Non-Markovianity
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1. Introduction

Quantum features, such as coherence, entanglement, discord and nonlocality, have
been introduced as physical resources [1H8] for performing special tasks, for instance
quantum computing [9], quantum teleportation [[10] or quantum dense coding [[11]], which
are not classically plausible [12]. Hence, nowadays, identifying and controlling quan-
tumness of the systems is of great importance. A common procedure for characterizing
non-classicality is to test criteria which are constructed based on classical constraints. Ob-
viously, violation of these criteria will reveal quantumness of the systems spontaneously
[2]. For instance, Leggett-Garg inequality, which is based on the classical notions of
macroscopic realism and noninvasive measurability, has been proposed to detect quantum
behavior of a single system [[13, [14]. It is noteworthy that the assumption of macroscopic
realism indicates that macroscopic systems remain in a defined state with well-defined
pre-existing value at all times, while noninvasive measurability imply that it is possible
to measure, in principle, this pre-existing value without perturbing the subsequent dy-
namics of system. In this regard, a violation of the Leggett-Garg inequality will disclose
the existence of non-classical temporal correlations in the dynamics of an individual sys-
tem [13}[14]]. This has led to a substantial amount of literature attempting to characterize
system non-classicality by Leggett-Garg inequalities both theoretically [[15H19] and ex-
perimentally [20, 21]]. Along this direction, robust quantum witnesses have been then
introduced as alternative to the Leggett-Garg inequality, which may help in reducing the
experimental requirements in verifying quantum coherence in complex systems [22-24]].

As another peculiar trait, a quantum system which evolves cyclically can acquire a
memory of its evolution in the form of a geometric phase (GP). The geometric phase was
first introduced in optics by Pancharatnam while he was working on polarized light [235]].
Successively, Berry theoretically explored GP in a closed quantum system which under-
goes adiabatic and cyclic evolution [26]. Afterwards, GP has been extended to systems
under non-adiabatic cyclic and non-adiabatic non-cyclic evolutions [27435]. Owing to
the fact that system-environment interactions play an important role for the realization
of some specific operations, the study of the geometric phase has been also applied to
open quantum systems. Along this route, some works have analyzed the correction to the
GP under the influence of an external environment using different approaches [36551]].
The global properties of the GP make it appropriate for constructing quantum gates with
highest fidelities with applications within the so-called geometric quantum computation
[S2-571].

On the other hand, the dynamics of open quantum systems is categorized into two
different classes of dynamical processes known as Markovian (memoryless) and non-
Markovian (memory-keeping) regimes [58, 59]. An open quantum system undergoing
Markovian dynamics, irreversibly transfers information to its surrounding environment
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leading to the information erasure. Differently, non-Markovian dynamics encompasses
memory effects allowing a partial recovery of information of the quantum system, even af-
ter complete disappearance [59-63]]. Such a feature temporarily counteracts the detrimen-
tal effect of the surrounding environment. A plenty of suitable measures have appeared in
the literature in an attempt to quantify non-Markovianity in quantum systems [61, 164-71]],
also identifying it as a potential resource [[/2} [73]. Recently, effects of frequency modula-
tion [[74], qubit velocity [[75+77] and weak measurement [/2] on the non-Markovianity of
a qubit inside leaky cavities have been studied.

Memory effects alone are not usually sufficient to permit the desired long-time preser-
vation of the quantum features of an open system. External control is thus required to this
scope. One of the most intriguing aspects within this context is given by the possibility
to harness quantumness by classical fields in hybrid quantum-classical systems [[78, [79]].
Such hybrid systems have in fact a fundamental role for the comprehension of the effects of
classical environments on quantum features and can then constitute convenient platforms
for their protection against the noise [80-100]].

To enlarge our knowledge about classical control of an open quantum system, here we
focus on a qubit inside a cavity subject to a classical driving field. It is worth recalling
that entanglement dynamics [101], quantum Fisher information [102], quantum speed-up
[103]], coherence dynamics [104] and non-Markovianity [103]] of such a model have been
studied, the latter limited to the resonant interaction of the classical field with the qubit.
In this work, we aim at providing insights concerning most fundamental quantum traits
of the system, which can be directly measured by feasible experiments and also useful
in a quantum information scenario. In particular, we investigate how non-classicality,
identified by both Leggett-Garg inequality and quantum witness, geometric phase and non-
Markovianity are influenced, under quite general conditions, by the adjustable classical
field. We extend our study to the non-resonant interaction and compare the results with
those obtained for the resonant case.

The paper is organized as follows. In Sec. [2[ we review the model [101} 102} [105],
giving the explicit expression of the evolved reduced density matrix. In Sec. [3] using
Leggett-Garg inequalities, we show the time behavior of non-classicality (quantumness)
of the system. The results regarding GP and non-Markovianity are presented in Sec. [5|and
Sec. [0} respectively. Finally, the dynamics of quantum witness is given in Sec. 4] In Sec.
we summarize our conclusions.

2. The system

We consider a qubit (two-level emitter) of excited and ground states |a) and |b), respec-
tively, with transition frequency wy, driven by an external classical field of frequency w,



Figure 1: Sketch of the system. A two-level emitter (qubit) with transition frequency wy is embedded in
a high-Q cavity with photon losses, having a spectral width (decay rate) 4. The qubit is controlled by a
classical field of frequency w., which can be resonant or out-of-resonance with w, having detuning A.

and embedded in a zero-temperature reservoir formed by the quantized modes of a high-Q
cavity, as depicted in Fig.[I] Under the dipole and rotating-wave approximations (detuning
A = wy—w, < wy, w,), the associated Hamiltonian of the system can be written as (& = 1)

(10T, 102
A = wofe/2+ ) oy + Qe+ ) gufed + .ol ()
k k

where w are the frequencies of the cavity quantized mode k, v, = |a){a|—|b){b|, ¥+ = |la){b|
(X- = |b){a]) denotes the qubit raising (lowering) operator, while a; (&Z) is the annihilation
(creation) operator of the k-th cavity mode. In addition, Q and g; represent the coupling
strengths of the interactions of the qubit with the classical driving field and with the cavity
modes, respectively. We assume that €2 is small compared to the atomic and laser frequen-
cies (Q < wy, w,). Using the unitary transformation U = e~“<¥:"/2 the Hamiltonian of the
system in the rotating reference frame becomes [101] [102]
Hey = H; + Hyy,
Hy=AR/2+1(Q0, + el Hy= ) wdlty + ) {gifeue™ +c.cl, @)
k k
where A is the detuning between qubit transition frequency and classical field frequency
defined above. By introducing the dressed states
|A) = sin(n/2)|b) + cos(n7/D)la),  |B) = cos(n/2)|b) — sin(n/2)la), 3)

which are the eigenstates of H,, the effective Hamiltonian can be rewritten as
1071

Ay = wp6/2+ ) ol +cos’(7/2) ) (g iue™” + c.c), )
k k
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where 6, = |A)A| — |B){B|, n = arctan(2Q/A) and wp = VA? + 4Q? denotes the dressed
qubit frequency. Moreover, 6— = |B){A| (6-+ = |A){B|) represents the new lowering (rais-
ing) qubit operator. Notice that the dressed states of Eq. (3)) are just two linear combi-
nations of the qubit bare states |a) and |b), which are conveniently introduced being the
eigenvalues of the Hamiltonian H; related to the interaction between the qubit and the
external classical field [102]. It is noteworthy that the validity of the effective Hamilto-
nian of Eq. stems both from the rotating wave approximation (A, Q < wy, w.) and
from neglecting the arising Lamb shift term (proportioinal to ), which produces a small
shift in the energy of the qubit with no qualitative effects on its dynamics [102, [105]. In
the following we shall focus on detectable qualitative behaviors of some observable quan-
tum properties of the driven qubit and all the parameters are taken so to fulfill the above
approximations.

We assume the overall system to be initially in a product state with the qubit in a given
coherent superposition of its states (cos 6|A) + sin6|B)) and the reservoir modes in the
vacuum state (|0)), that is

|[¥(0)) = (cos 8 ]A) + sin @ |B))|0). 5
Hence, the evolved state vector of the system at time ¢ is

(1)) = A(1) cos 6 |A)|0) + sin 6 | B)|0) + Z B (0)|B)|14), (6)
k

where |1;) represents the cavity state with a single photon in mode k and By (t) is the cor-
responding probability amplitude. The evolution of the state vector obeys the Schrodinger
equation. Substituting Eq. (6) into the Schrdinger equation, we obtain the integro-differential
equation for A(?) as

A(t) + cos*(7/2) f dt'F(t,1)A(t') = 0, (7)
0

where the kernel F(z,t") is the correlation function defined in terms of continuous limits of
the environment frequency

F(t,1') = f J(wp)e P d gy, (8)
0

Here, J(wy) represents the spectral density of reservoir modes. We choose a Lorentzian
spectral density, which is typical of a structured cavity [58]], whose form is
yA?

1
N = S oo — o — P + BT 2




where 6 = w( — w, denotes the detuning between the center frequency of the cavity modes
and wy. The parameter v is related to the microscopic system-reservoir coupling constant
(qubit decay rate), while A defines the spectral width of the cavity modes. It is noteworthy
that the parameters v and A are related, respectively, to the reservoir correlation time 7,
and to the qubit relaxation time 7,, as 7, = A~! and 7, ~ y~' [58]. It is noteworthy that the
reservoir correlation time 7, and the qubit relaxation time 7, the are related to parameters
yand das 7, = A7 and 7, ~ y~! respectively [58]]. Qubit-cavity weak coupling occurs for
A >y (1, < 7,); the opposite condition A < y (7, > 7,) thus identifies strong coupling. The
larger the cavity quality factor Q, the smaller the spectral width A and so the photon decay
rate. To remain within the approximations of the Hamiltonian model, we shall choose
A <y [105].
With the Lorentzian spectral density J(wy) above, the kernel of Eq. (8]) becomes

F(t,t) = (yA/2)e M), (10)

with M = A — i(wp + & — A). Substituting the resulting kernel into Eq. (7)) yields

A(r) = e M2 {cosh(Ft/4) + ZTM sinh(Ft/4)}, (11)

where ' = \/4M2 —2yA(1 + cosn)? (the expression of the amplitude B, (¢) of Eq. @) is
reported in Appendix [Appendix A).

The time-dependent reduced density matrix of the qubit is obtained, in the dressed
basis {|A),|B)}, by tracing out the cavity degrees of freedom from the evolved state of
Eq. (6), that gives

cos?@ A 1sin(20) A(r)

P = (% sin(26) A*(r) 1 — cos> 8 JA(DI? ) 12)

Having this expression of p(¢), we can then investigate the time behavior of quantumness
and memory of our open qubit under classical control.

3. Leggett-Garg Inequality

In this section, we discuss how the classical driving field can affect the non-classical
dynamics of the quantum system. To this aim, we employ Leggett-Garg inequalities which
assess the temporal non-classicality of a single system using correlations measured at dif-
ferent times. We recall that the original motivation behind these inequalities was the pos-
sibility to check the presence of quantum coherence in macroscopic systems. A Leggett-
Garg test entails either the absence of a realistic description of the system or the impos-
sibility of measuring the system without disturbing it. Such inequalities are violated by
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quantum mechanics on both sides. Some recent theoretical proposals have been reported
for the application of Leggett-Garg inequalities in quantum transport, quantum biology
and nano-mechanical systems [[14].

The simplest Leggett-Garg inequality can be constructed as follows. Consider an ob-
servable O, which can take the values =1 . One then performs three sets of experimental
runs such that in the first set of runs O is measured at times #; and /, = #; + 7; in the
second, at #; and t3 = t; + 27; in the third, at #, and #;. It is noteworthy that such measure-
ments directly enable us to determine the two-time correlation functions (Ot j)é(ti)> with
t; > t;. On the basis of the classical assumptions of macroscopic realism and noninvasive
measurability, one can derive the Leggett-Garg inequality as [9, [14]

C3;=Cy +Cxn—C3 <1, (13)

where C;; = ({O(t,-), 0(t /2, with {OA(t,»), O(Ij)} indicating the anticommutator of the two
operators. Utilizing similar arguments, one can also obtain a Leggett-Garg inequality for
measurements at four different times, ¢, t,, 3 and t4, = #; + 37, given by [15,[16]

C4 = C21 + C32 + C43 - C41 <2. (14)

As mentioned above, the inequalities of Egs. and are obtained under two
classical assumptions, so quantum theory violates Leggett-Garg inequalities. Here, we
investigate the dynamics of the Leggett-Garg inequalities for our system by choosing the
measurement operator O = . Exploiting the qubit evolved density matrix of Eq. ,
we obtain

Cij =010 (1)) + O (2))0 (1)) /2
1
= (04 )T-(1) + TG+ (1)) + (G (8)T (1)) + T-(1)F4(1)))
= R[cos’(OA(t)A"(t))e ™) + sin*(O)A(t; — t;)e”P™7], (15)

where R[z] indicates the real part of the complex number z.

Based on Eq. (I3)), we calculate and plot in Fig. 2| the dynamics of both Leggett-Garg
inequalities C; (panels (a), (¢)) and Cy4 (panels (b), (d)), for some values of the coupling
strength (Rabi frequency) Q between the qubit and the classical field in the resonant case
(A = 0). We also choose a value of the spectral width A such that memory effects are
effective (4 = 0.01, strong qubit-cavity coupling) when the classical field is turned off.
The qubit initial state is taken to be in the dressed state |A), that is 6 = 0 in Eq. . As can
be observed from these plots, in the absence of classical driving field (€ = 0), nonclassical
behavior of the qubit (that is, violation of the inequalities) is practically negligible. This
means that, despite the presence of memory effects in the dynamics, the manifestation of an
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Figure 2: Leggett-Garg inequalities C3 (panels (a) and (c)) and Cy4 (panels (b) and (d)) as functions of
the dimensionless time interval y7 for different values of the qubit-classical field coupling strength (Rabi
frequency) Q. The values of the other parameters are taken as: 4 = 0.01y, 6 =0,0 = A =0.

experimentally detectable quantum trait of the system by Leggett-Garg inequality violation
does not occur without an external control. Contrarily, when the classical driving field is
turned on and its intensity increased, we find a significant enhancement of nonclassical
behavior (C3 > 1, C4 > 2) in wide regions of y7.

To get insights about the role of the qubit-field detuning A, we plot in Fig. [3| the time
behavior of the Leggett-Garg inequalities C3 (panels (a) and (c)) and Cy4 (panels (b) and
(d)) for different values of the detuning parameter. The classical control is acting on the
system (Q = 0.1y). It is interesting to notice that the detuning play a detrimental role wit
respect to the quantumness of the qubit. In fact, an increase of the detuning significantly
reduces the values of the figures of merit for the Leggett-Garg inequalities, which tend to
stay below the quantum threshold. As a consequence, the maximum nonclassical behavior
of an open qubit is obtained when the classical field resonantly interacts with the quantum
system.



Figure 3: Leggett-Garg inequalities C3 (panels (a) and (c)) and C4 (panels (b) and (d)) as functions of the
dimensionless time interval y7 for different values of the qubit-classical field detuning A. The values of the
other parameters are chosen as: 1 = 0.01y,6=0,6 =0, Q= 0.1y.

4. Quantum witness and coherence

In this section, the quantum features of the controlled qubit are studied using a suitable
quantum witness. Quantum witnesses have been introduced in the literature [17, (19} 22] to
conveniently probe time-dependent quantum coherence, without resorting to demanding
non-invasive measurements or tomographic processes. Such witnesses are particularly
effective because they are capable to detect quantumness in a range wider than the Leggett-
Garg inequality. These practical advantages make quantum witnesses of experimental
interest, with uses not only in open quantum systems but also in quantum transport in
solid-state nanostructures [22]].

Here we adopt the quantum witness defined as [22]]

Wq = |pm(t) - p;n(t)L (16)

where p,,(f) represents the probability of finding the qubit in a state m at time ¢, while
p.(1) = Zﬁzl p(m, tln, ty) pa(to) is the (classical) probability of finding the system in m
after a nonselective measurement of the state n has been performed at time 7, (notice that,
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for a qubit, d = 2 in the sum). Following the classical no-signaling in the time domain
[108]], the first measurement at time f; should not disturb the statistical outcome of the
later measurement at time ¢, so that p,,(t) = p, (1) (Wy = 0 and the system behaves as a
classical one. Therefore, a quantum witness W, > 0 identifies the nonclassicality of the
system state at time 7. The conditional probability p(m, t|n, ty) is expressed as a propagator
Amn(t, o) = p(m, t|n, ty), which can be explicitly found by choosing the qubit basis and the
state to be measured [17]].

For the controlled open qubit here considered, the natural computational basis is the
dressed state basis {|A), |B)} given in Eq. (3)) and the qubit is initially (¢ = 0) prepared in the
coherent superposition cos 6|A) + sin 6 |B), as seen in Eq. (5). For calculating the quantum
witness, the nonselective measurement of the state n at time #, = 7/2 is done in the basis
|£) = (|A) = |B))/ V2, while the state m to be measured at time 7 = 7 is chosen to be [+)
(the projector I, = |+)(+] is thus measured at r = 7). Exploiting the qubit evolved density
matrix of Eq. (I2)) and determining the explicit expression of the propagator A(z, 1)) =

IAmn(?, 7)l], the quantum witness of Eq. (I6) is (see Appendix

1
Wo= , (17)

sin(26) (A(T) +A*(1) - %(A(T/Z) + A*(T/Z))2)

where A(t) is given in Eq. (11).
In general, as mentioned above, the quantum witness provides qualitative information
whether the qubit exhibits quantum behavior during the evolution. In view of a more

Coherence
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Figure 4: Coherence Cy, (¢) as a function of the dimensionless time ¢ for different values of Q, with 2 = 0.01y
and A = 0. Other parameters are 8 = 7/4 (qubit initial state [+)) and 6 = 0.
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Figure 5: Quantum witness W,(7) and coherence monotone Cy(7) (envelope of half quantum coherence) as
a function of the dimensionless time interval yt for (a) different values of Q with A = 0, and (b) different
values of detuning A with Q = 0.1y. Other parameters: A = 0.01y, 8 = /4 (qubit initial state |[+)) and 6 = 0.

quantitative inspection, giving us the amount of quantumness the qubit retains during the
dynamics, a quantifier of quantum coherence is needed [[109]. By using the well-known
li-norm of coherence C;,(t) = X, loi;l [110], from the qubit reduced density matrix of
Eq. one easily obtains C;, () = |A(¢)|. It is also interesting to compare in our sys-
tem the dynamics of Wy(7) with the so-called coherence monotone Cy(7), defined as the
envelope of Cy,(7)/2, which has been shown to provide the upper bound of the quantum
witness in a spontaneous Markovian (memoryless) decay of a qubit in a thermal reser-
voir [I7]. In Figures [4] and [5| we plot, respectively, the dynamics of quantum coherence
Cy,(?) and the dynamics of Wy(7) together with the coherence monotone, starting from the
qubit (coherent) initial state |[+) (§ = n/4 in Eq. (5)) under qubit-cavity strong-coupling
(4 = 0.01y) and different values of other relevant parameters. As expected, coherence is
better protected by increasing the coupling to the control of classical driving field (res-
onant case A = 0). From Fig. [5(a-b), we find that in this model the maximum of the
quantum witness coincides with the coherence monotone, showing a quantitative relation
between witness (W) and quantifier (C;,) of quantumness. The quantum witness decays
rapidly in the absence of the classical driving field (€ = 0), although there are significant
oscillations above zero which allows us to detect quantumness anyway. This shows the
finer resolution of W as an indicator of nonclassicality with respect to the Leggett-Garg
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Figure 6: Effective decay rate I'(¥) (in units of ) as a function of the dimensionless time y¢ for different
values of Rabi frequency of classing driving field Q, with 4 = 0.01y and A = 0. Other parameters are
0 = n/4 (qubit initial state [+)) and ¢ = 0.

inequality under the same condition. However, qubit quantumness can be maintained for
longer times by increasing the coupling € to the resonant (A = 0) classical control (see
Fig. 5(a)), a behavior similar to that of the Leggett-Garg inequality violation shown in
Sec. @ Therefore, W, quantitatively confirms that the controllable classical field leads to
extending the lifetime of quantum coherence under resonant interaction. It is then natural
to explore the role of the detuning A. This is displayed in Fig. [5(b), fixing a qubit-cavity
strong coupling 4 = 0.01y and an interaction strength Q = 0.1y with the classical control
(corresponding to the best performance in the resonant case of Fig. [5(a)). As a general
behavior, we find that the maintenance property of quantum witness (and therefore coher-
ence) is significantly weakened by increasing A. An out-of-resonance classical control is
thus adverse to a long-time manifestation of quantumness for the qubit.

The above results can be interpreted by an analogy to dynamical decoupling technique
(111, 112]. Indeed, the classical field acting on the open system (qubit) can be viewed as
responsible of a controllable cyclic decoupling interaction term Hp := Qe ™', + c.c. in
the Hamiltonian of Eq. (I), which can shield the qubit from noise. This analogy can be
confirmed by looking at the behavior of the effective time-dependent decay rate arising
from the qubit reduced density matrix of Eq. , that is [58, [75] T'(r) = —2Re{A(r)/A(?)).
Figure [6] displays that, under resonant interaction, increasing the coupling Q of the qubit
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to the external driving field enables a reduction of I'(¢), implying an inhibition of the detri-
mental effects of noise.

5. Geometric phase

In this section, we analyze the influence of the classical driving field on the geometric
phase (GP) of the system. We already mentioned in the Introduction how the GP and
its properties have found applications in the context of geometric quantum computation,
allowing quantum gates with highest fidelities [52H56]]. One of the principal motivations
for having quantum gates based on GP is that they seem to be more robust against noise
and errors than traditional dynamical gates, thanks to their topological properties [S7, 113~
115]. Geometric quantum computation exploits GPs to implement universal sets of one-
qubit and two-qubit gates, whose realization finds versatile platforms in systems of trapped
atoms (or ions) [116} [117], quantum dots [118] and superconducting circuit-QED [54+-
56,1119, 1120]. Since our system can be implemented in these experimental contexts, using
real or artificial atoms, it is important to unveil the time behavior of the qubit geometric
phase under classical control.

To this aim, we need to determine the geometric phase for a mixed (noisy) state of a
qubit [S7]. In particular, we adopt the kinematic method [33] to calculate the geometric
phase of the qubit which undergoes a non-unitary evolution. According to this method,
the qubit GP is given by [33]

®, = arg {Z Ve &I e0)eAT)eh "’“"l)'g’w}’ "

where &;(0), &(T) and |&;(0)), |e(T)) (i = 1,2) are the instantaneous eigenvalues and
eigenvectors of the reduced density matrix of the qubit at times ¢ = 0, T, respectively.

In order to get the desired qubit geometric phase for our system, we first calculate the
eigenvalues and eigenstates of the density matrix p(f) of Eq. (I2) which are, respectively,

e.(t) = % {1 + \/lA(t)|2 sin?(26) + (2|A(?)|? cos? 6 — 1)2}, (19)
and

le. (1)) = e "% cos B|E) + P2 5in O|G),

le_(t)) = —e P sin B|E) + ¢“?"/? 5in O|G), (20)
where

2 n2
c0s® = 2(JA(®)|* cos* 0 — &_) ' 21

VIA(D)I2 sin?(26) + 4(JA(1)]? cos? 6 — &_.)>
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Figure 7: Geometric phase @, of the qubit, after a period T = 27/wp, as a function of the (scaled) cavity
spectral width A/y for different values of the qubit-classical field coupling strength (Rabi frequency) Q.
Other parameters are taken as 8 = /6,6 = A = 0.

It is clear that £_(0) = 0. Consequently, in this case only the “+” mode contributes to the
GP, as evinced from Eq. (]'1;8[) Then, the GP of the qubit after a period T = 27/wp can be
readily obtained by Eq. (I8) as

T
D, = wp f cos” @d. (22)
0

Fig. [7] displays the behavior of GP versus A/y for different coupling strengths Q of
the classical driving field with the qubit, under resonant interaction. The qubit initial
state is taken as a superposition of the two dressed states, choosing 6 = 7/6 in Eq. (5).
Such a study allows us to show the interplay between the couplings of the qubit with both
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Figure 8: Geometric Phase (®,) as a function of spectral width A/y for different values of detuning frequency
of classing driving field (A). Other parameters are 8 = 71/6,6 = 0, Q = 0.1y.

cavity field (1) and classical field (€2). In general, whatever the value of Q, the geometric
phase tends to diminish with the increase of 1/vy, eventually approaching an almost fixed
value. So, increasing the cavity spectral width A (that is, decreasing the cavity quality
factor and the qubit-cavity coupling) reduces the value of the geometric phase acquired
from the qubit. A remarkable aspect is provided, for an assigned value of A/, by the
non-monotonic behavior of the qubit GP when Q is increased. As seen from Fig. [7[a-b),
the GP firstly becomes smaller when the classical control is turned on (QQ < 0.1y, panel
(a)), and then starts increasing for larger intensities of the coupling (Q > 0.3y, panel (b)),
significantly overcoming the value reached in absence of the classical field. We point out
how the geometric phase of the qubit evolved mixed state can be thus efficiently stabilized,
independently of the cavity spectral width, by suitably adjusting the coupling of the qubit
to the classical control (see, for instance, & = 1vy). This feature is quite useful, since
it entails that there is no need to have a high-Q cavity to maintain a given amount of
geometric phase, provided that an intense resonant classical control field is tailoring the
qubit.

The effects due to an out-of-resonance classical control are then shown in Fig. [§] The
curves here display the GP versus A/y for different values of the detuning parameter A,
for a small coupling to the classical field (Q = 0.1y). We choose a small value of Q =
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0.1y to understand whether the detuning is capable to enrich or not the value of the GP.
Also in this case we retrieve a non-monotonic behavior with respect to the detuning, for
a fixed value of A/y. In fact, it is evident from Fig. [§| that when the classical field is near
resonant (0 < A < 0.1y) the acquired GP becomes more fragile than the resonant case
(A = 0), while for the case far from resonance the GP decreases more slowly with respect
to the growth of the cavity spectral width A/y. Therefore, for a small qubit-classical field
coupling, a non-resonant control is more convenient to stabilize the geometric phase of the
open qubit to a larger amount.

6. Non-Markovianity

In this section we focus on the memory effects present in the system dynamics, estab-
lishing their dependence on the classical field. We recall that without the external control
(Q = 0), memory effects due to non-Markovianity are physically characterized by the ra-
tio 4/y. In fact, strong coupling conditions for which 1/y < 1 activate a non-Markovian
regime for the system dynamics due to a cavity correlation time larger than the qubit relax-
ation time [38,160]. On the contrary, values of A/y > 1 usually identify a weak coupling
with Markovian dynamics. However, the action of the external classical field may mod-
ify the conditions for which memory effects are present, which therefore deserve to be
investigated.

To identify non-Markovian dynamics of the system, among the various quantifiers,
we utilize the so-called BLP measure [64]] that is based on the distinguishability between
two evolved quantum states, measured by the trace distance. We briefly recall the main
physical ingredients behind this non-Markovianity measure. For any two states p;(¢) and
>(#) undergoing the same evolution, their trace distance is

Dlp1(®), p2(0)] = (1/2)Trlp (1) — p2(2)], (23)

where |X| = VXX and 0 < D < 1 [12]. The time derivative of the trace distance
(o, p1(0),02(0)] = dD[p;(?),p2()]/dt) can be interpreted as characterizing a flow of
information between the system and its environment. Within this scenario, Markovian
processes satisfy oo < 0O for all pairs of initial states p;,(0) at any time ¢. Namely, p;(¢)
and p,(¢) will eventually lose all their initial information and become identical. However,
when o > 0, p((¢) and p,(¢) are away from each other. This can be seen as a backflow of
quantum information from the environment to the system and the process is called non-
Markovian. Based on this concept, a measure of non-Markovianity can be defined by [64]]

N = maxy, 0),0,0) f oz, p1(0), p2(0)]dr, (24)

>0
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Figure 9: Non-Markovianity as a function of A/y for different Q; (a) A = 0, (b) A = 0.1y, (c) A = 1y and (d)
A = 10y. The values of the other parameters are taken as: 6 = 0, 6 = 0.

where the time integration is taken over all intervals in which there is information backflow
(o > 0) and the maximization is done over all possible pairs of initial states.

In Fig.[9] we display the effect of the coupling strength of classical driving field to the
qubit on the non-Markovianity as a function on the ratio 4/y for different detuning A. The
initial state of the qubit is chosen to be in the dressed state |A), corresponding to 6 = 0 in
Eq. (). In the absence of classical field (Q = 0) the known behavior explained above is
quantitatively retrieved, that is memory effects significantly decrease with an increase of
A/y (alarger cavity spectral width). The plots of Fig. [0]then clearly show that the action of
the classical control tends to destroy non-Markovianity, especially in the resonant case A =
0 (see panel (a)). An out-of-resonance interaction mitigates the disappearance of memory
effects, whose amount of non-Markovianity approaches that occurring without classical
field (see panel (d), in particular). We highlight that such a behavior is in contrast with the
enriching effect of the classical control field on the quantum features of the qubit, such as
Leggett-Garg inequality, quantum witness and geometric phase treated above. This aspect
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Figure 10: Non-Markovianity as a function of A/y for different Q; Q = 0.01y (solid blue line), Q = 0.1y
(dotted red line), Q = 0.5y (dashed green line), Q = 1y (dash-dotted black line). The values of the other
parameters are taken as: 4 = 0.01ly, 6 =0,6 = 0.

makes it emerge that larger memory effects do not correspond to enhanced quantumness
of the system, contrarily to what one may expect. In fact, weaker non-Markovianity here
occurs in correspondence to enriched dynamics of quantumness of the controlled qubit.

To better figure out the interactive role of the coupling constant (Rabi frequency) €2 and
detuning A of the classical driving field, we also plot non-Markovianity as a function of
A/y for different values of Q in Fig.[I0] The curves here confirm that an intense classical
field strongly reduces non-Markovianity of the system, especially in the resonant case. To
prevent this, large detuning is required. Namely, the larger €2, the higher the values of the
detuning required in order to maintain a given degree of non-Markovianity.

7. Conclusion

In this work, we have investigated the role of an external classical field as a control
of quantumness, geometric phase and non-Markovianity of a qubit embedded in a leaky
cavity. We focused on the dynamics of fundamental quantum traits linked to the superposi-
tion principle (coherence) of the qubit which are experimentally detectable in a direct way,
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identified by Leggett-Garg inequality violations and a suitable quantum witness. Consid-
ering such quantities is advantageous from a practical perspective, since quantumness can
be detected without using tomographic techniques, which require experimental resources
in terms of measurement settings that increase exponentially with the system complexity
[22].

A general remarkable point we have found is that an intense and resonant classical
control is required to enrich the quantumness of a qubit during its time evolution. The
more significant the interaction of the quantum system with an external classical field, the
more quantum the system behaves. As a consequence of the quantumness enhancement,
we have then shown that the geometric phase acquired by the qubit during a period of its
noisy evolution can be efficiently stabilized, independently of the cavity spectral width,
by suitably adjusting the coupling of the qubit to the classical control. Cavities with very
high quality factors are therefore not needed to maintain a given geometric phase of the
open qubit, provided that the latter is harnessed by an intense resonant classical field. We
have also seen that the action of the classical control strongly weakens non-Markovianity
(memory effects), especially in the resonant case, in contrast with the enriching effect it
has onto the quantum behavior of the qubit, such as Leggett-Garg inequality, quantum
witness and geometric phase. This aspect makes it clear that larger memory effects do
not necessarily entail enhanced quantumness of the system. Therefore, quantumness pro-
tection is not due to system-environment information backflow but it is rather caused by
the controllable interaction of the open qubit with the external classical field which, as we
have shown, induces a reduction of the effective time-dependent decay rate.

The system considered and the corresponding findings can be feasible by current tech-
nologies in both cavity and circuit-QED, which enable the manipulation of interactions of
classical fields with qubits [121-124]]. Our results supply useful insights towards a deeper
comprehension of the interaction of a classical signal with a quantum device, highlighting
the importance of hybrid classical-quantum systems in a quantum information scenario.

Appendix A. Expression of the state evolution amplitude B, (¢)

Analogously to the passages which conduct to the determination of A(f), an integro-
differential equation can be obtained for the probability amplitude By(f) of Eq. (6) [58].
Its explicit expression, which does not play any role in our analysis, is

*

cos @
Bu(f) = —ig"T cos*(1/2)

IM\( 1 = e 12— 5-iGk+b-wp)lt
Ul
F 7—2—1(6k+A—wD)
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Appendix B. Calculation of the quantum witness

In this appendix, we report the evaluation of the quantum witness W, of Eq. (16).

To compute the propagator A, we first need to define the Lindblad-type evolution of
an operator X within the Heisenberg picture, that is dX/ds = £[X] [17,[19]. Assuming
the cavity owns a single photon in mode k, the Lindblad operators can be defined in a
basis consisting of raising and lowering Pauli operators (6. = 6, +i6yand 6_ = &, —
idy). Notice that the computational basis for our system is the dressed state basis {|A), | B)}
given in Eq. (3), where 6_ = |[B)(A| (6, = |A)(B]) represents the lowering (raising) qubit
operator. The integro-differential equation for the operator X, arising from the Lindblad
equation, is expressible as X + L[X] = 0. For our system, this equation takes the form

X(1) + cos*(n/2) f dr F[X()] = 0, (B.1)
0

where
FIX()] = Ft,0)6,.0_ X)) + X()F.6- —26.X()6), (B.2)

with the function F(z, ) being the kernel (correlation function) of Eq. (8).
When the operator X is substituted by the projectors Il, = %(JJ‘ + o,) onto the eigen-

states |+) = (|A) = |B))/ V2 of o, We obtain

1L (1) ] [ drE@ry - [ drF@,r) (m(z'))_
(H_(t))+cos o/ 2)[— [farFary [ arFer) \TL@) =0

From the above equation, the propagator A(z,0) in the basis {|+)}, such that [1.(¢) =
A(t,0)I1.(0) is finally obtained as

(B.3)

1+ 1A® + A" (D) 1 - J(A@) + A*(t))) (B-4)

1
A®O) =3 ( 1= 1A + A" (0) 1+ 3(AWD) +A*(1)

whose matrix elements are A,,,(¢,0) with (m,n) = (+, —).
In absence of the intermediate nonselective measurement, the quantum probability p..
of finding the state |+) at time 7 is defined by p.(7) = (I1.(7)) = Tr(o(7)I1.(7)), where p(7)
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is the evolved reduced density matrix of the qubit. Using the propagator A(#, 0) above, this
probability results to be

(P+(T)

(1) (B.5)

) = A, 0)(”*(0)).

p-(0)

Assuming the qubit initially prepared in a coherent superposition of its dressed states, that
is cos 0|A) +sin 8 |B), one gets p.(0) = (1 £sin(26))/2. Therefore, the quantum probability
p+(7)is

p+(1) = % I+ %sin(29)(A(T) + A*(T))] . (B.6)

On the other hand, in the presence of a nonselective measurement at time ¢ = 7/2 the
(classical) probability is similarly defined at time 7 by [17]

(PL(T) p+(0) )
p(1) p-(0))°

Therefore, the classical probability of finding the open controlled qubit in the state |+) at
time 7 results to be

) = A(1,7/2)A(7/2,0) ( (B.7)

pL(1) = % 1+ isin(ZQ)(A(T/2) + A*(T/2))2] . (B.8)

Finally, the quantum witness Wy (7) = |p.(7) — p/,(7)| for our system can be explicitly
obtained.
References

[1] A. Streltsov, G. Adesso, M. B. Plenio, Colloquium: Quantum coherence as a re-
source, Rev. Mod. Phys. 89 (2017) 041003.

[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality, Rev.
Mod. Phys. 86 (2014) 419.

[3] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement,
Rev. Mod. Phys. 81 (2) (2009) 865-942.

[4] K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum
boundary for correlations: Discord and related measures, Rev. Mod. Phys. 84
(2012) 1655.

21



[5] R. Lo Franco, G. Compagno, Quantum entanglement of identical particles by stan-
dard information-theoretic notions, Sci. Rep. 6 (2016) 20603.

[6] A.S. Rab, E. Polino, Z.-X. Man, N. B. An, Y.-J. Xia, N. Spagnolo, R. Lo Franco,
F. Sciarrino, Entanglement of photons in their dual wave-particle nature, Nat. Com-
mun. 8 (2017) 915.

[7] R. Lo Franco, G. Compagno, Indistinguishability of elementary systems as a re-
source for quantum information processing, Phys. Rev. Lett. 120 (2018) 240403.

[8] A. Castellini, B. Bellomo, G. Compagno, R. Lo Franco, Activating remote entan-

glement in a quantum network by local counting of identical particles, Phys. Rev.
A 99 (2019) 062322.

[9] D. Gottesman, I. L. Chuang, Demonstrating the viability of universal quantum com-
putation using teleportation and single-qubit operations, Nature 402 (1999) 390.

[10] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Phys.
Rev. Lett. 70 (1993) 1895.

[11] C. H. Bennett, S. J. Wiesner, Communication via one-and two-particle operators on
einstein-podolsky-rosen states, Phys. Rev. Lett. 69 (1992) 2881.

[12] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information,
Cambridge University Press, Cambridge, 2000.

[13] A.J. Leggett, A. Garg, Quantum mechanics versus macroscopic realism: Is the flux
there when nobody looks?, Phys. Rev. Lett. 54 (1985) 857.

[14] C.Emary, N. Lambert, F. Nori, Leggettgarg inequalities, Rep. Prog. Phys. 77 (2013)
016001.

[15] P. W. Chen, M. M. Ali, Investigating leggett-garg inequality for a two level system
under decoherence in a non-markovian dephasing environment, Sci. Rep. 4 (2014)
6165.

[16] M. M. Ali, P. W. Chen, Probing nonclassicality under dissipation. journal of physics
a: Mathematical and theoretical, J. Phys. A 50 (2017) 435303.

[17] A. Friedenberger, E. Lutz, Assessing the quantumness of a damped two-level sys-
tem, Phys. Rev. A 95 (2017) 022101.

22



[18] M. Ban, Double-time correlation functions of two quantum operations in open sys-
tems, Phys. Rev. A 96 (2017) 042111.

[19] A. Friedenberger, E. Lutz, arXiv:1805.11882 [quant-ph].

[20] K. Wang, C. Emary, X. Zhan, Z. Bian, J. Li, P. Xue, Enhanced violations of leggett-
garg inequalities in an experimental three-level system, Opt. Express 25 (2017)
31462-31470.

[21] K. Wang, C. Emary, M. Xu, X. Zhan, Z. Bian, L. Xiao, P. Xue, Violations of a
leggett-garg inequality without signaling for a photonic qutrit probed with ambigu-
ous measurements, Phys. Rev. A 97 (2018) 020101.

[22] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, F. Nori, Witnessing quantum coher-
ence: from solid-state to biological systems, Sci. Rep. 2 (2012) 885.

[23] J. Kofler, C. Brukner, Condition for macroscopic realism beyond the Leggett-Garg
inequalities, Phys. Rev. A 87 (2013) 052115.

[24] G. Schild, C. Emary, Maximum violations of the quantum-witness equality, Phys.
Rev. A 92 (2015) 032101.

[25] S. Pancharatnam, Generalized theory of interference and its applications, Proc. In-
dian Acad. Sci. 44 (1956) 247.

[26] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc.
Lond. A (1984) 45-57.

[27] Y. Aharonov, J. Anandan, Phase change during a cyclic quantum evolution, Phys.
Rev. Lett. 58 (1987) 1593.

[28] J. Samuel, R. Bhandari, General setting for berry’s phase, Phys. Rev. Lett. 60 (1988)
2339.

[29] J. A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Geometric quantum computation
using nuclear magnetic resonance, Nature 403 (2000) 869.

[30] E. Sjoqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson, D. K. Oi, V. Vedral,
Geometric phases for mixed states in interferometry, Phys. Rev. Lett. 85 (2000)
2845.

[31] S. Puri, N. Y. Kim, Y. Yamamoto, Two-qubit geometric phase gate for quantum dot
spins using cavity polariton resonance, Phys. Rev. B 85 (2012) 241403.

23



[32] K. Singh, D. M. Tong, K. Basu, J. L. Chen, J. F. Du, Geometric phases for nonde-
generate and degenerate mixed states, Phys. Rev. A 67 (2003) 032106.

[33] D. M. Tong, E. Sjoqvist, L. C. Kwek, C. H. Oh, Kinematic approach to the mixed
state geometric phase in nonunitary evolution, Phys. Rev. Lett. 93 (2004) 080405.

[34] X. X. Y1, L. C. Wang, T. Y. Zheng, Berry phase in a composite system, Phys. Rev.
Lett. 92 (2004) 150406.

[35] S. L. Wu, X. L. Huang, L. C. Wang, X. X. Yi, Information flow, non-markovianity,
and geometric phases, Phys. Rev. A 82 (2010) 052111.

[36] A. Carollo, I. Fuentes-Guridi, M. F. Santos, V. Vedral, Geometric phase in open
systems, Phys. Rev. Lett. 90 (2003) 160402.

[37] A. Carollo, I. Fuentes-Guridi, M. F. Santos, V. Vedral, Spin-1/2 geometric phase
driven by decohering quantum fields, Phys. Rev. Lett. 92 (2004) 020402.

[38] F. C. Lombardo, P. I. Villar, Geometric phases in open systems: A model to study
how they are corrected by decoherence, Phys. Rev. A 74 (2006) 042311.

[39] X.X.Yi, D. M. Tong, L. C. Wang, L. C. Kwek, C. H. Oh, Geometric phase in open
systems: Beyond the markov approximation and weak-coupling limit, Phys. Rev. A
73 (2006) 052103.

[40] J. Dajka, M. Mierzejewski, J. Luczka, Geometric phase of a qubit in dephasing
environments. journal of physics a: Mathematical and theoretical, J. Phys. A 41
(2007) 012001.

[41] P. L. Villar, Spin bath interaction effects on the geometric phase, Phys. Rev. A 373
(2009) 206-2009.

[42] F. M. Cucchietti, J. F. Zhang, F. C. Lombardo, P. 1. Villar, R. Laflamme, Geometric
phase with nonunitary evolution in the presence of a quantum critical bath, Phys.
Rev. Lett. 105 (2010) 240406.

[43] F. C. Lombardo, P. I. Villar, Environmentally induced effects on a bipartite two-
level system: Geometric phase and entanglement properties, Phys. Rev. A 81 (2010)
022115.

[44] J.J. Chen, J. H. An, Q. J. Tong, H. G. Luo, C. H. Oh, Non-markovian effect on the
geometric phase of a dissipative qubit, Phys. Rev. A 81 (2010) 022120.

24



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Hu, H. Yu, Geometric phase for an accelerated two-level atom and the unruh
effect, Phys. Rev. A 85 (2012) 032105.

F. C. Lombardo, P. I. Villar, Nonunitary geometric phases: a qubit coupled to an
environment with random noise, Phys. Rev. A 87 (2013) 032338.

F. C. Lombardo, P. I. Villar, Correction to the geometric phase by structured envi-
ronments: The onset of non-markovian effects, Phys. Rev. A 91 (2015) 042111.

K. Berrada, C. R. Ooi, S. Abdel-Khalek, Geometric phase and entanglement of
raman photon pairs in the presence of photonic band gap, J. App. Phys. 117 (2015)
124904.

B. Liu, E Y. Zhang, J. Song, H. S. Song, Direct measurement on the geometric
phase of a double quantum dot qubit via quantum point contact device, Sci. Rep. 5
(2015) 11726.

F. C. Lombardo, P. I. Villar, Geometric phase and quantum correlations for a bipar-
tite two-level system, J. Phys.: Conf. Series 626 (2015) 012043.

K. Berrada, Geometric phase for a two-level system in photonic band gab crystal,
Solid State Comm. 273 (2018) 34-38.

M. A. Nielsen, M. R. Dowling, M. Gu, A. C. Doherty, Quantum computation as
geometry, Science 311 (2006) 1133-1135.

J. T. Thomas, M. Lababidi, M. Tian, Robustness of single-qubit geometric gate
against systematic error, Phys. Rev. A 84 (2011) 042335.

C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, L. M. Duan, Ex-
perimental realization of universal geometric quantum gates with solid-state spins,
Nature 514 (2014) 72.

Y. Wang, C. Guo, G. Q. Zhang, G. Wang, C. Wu, Ultrafast quantum computation in
ultrastrongly coupled circuit QED systems, Sci. Rep. 7 (2017) 44251.

C. Song, S. B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, D. Zheng, Continuous-
variable geometric phase and its manipulation for quantum computation in a super-
conducting circuit, Nat. Comm. 8 (2017) 1061.

E. Sjoqvist, Geometric phases in quantum information, Int. J. Quantum Chem. 115
(2015) 1311-1326.

25



[58] H. P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Uni-
versity Press, 2002.

[59] I. de Vega, D. Alonso, Dynamics of non-Markovian open quantum systems, Rev.
Mod. Phys. 89 (2017) 015001.

[60] R. Lo Franco, B. Bellomo, S. Maniscalco, G. Compagno, Dynamics of quantum
correlations in two-qubit systems within non-Markovian environments, Int. J. Mod.
Phys. B 27 (2013) 1345053.

[61] A.Rivas, S. F. Huelga, M. B. Plenio, Quantum non-Markovianity: characterization,
quantification and detection, Rep. Prog. Phys. 77 (2014) 094001.

[62] L. Aolita, F. de Melo, L. Davidovich, Open-system dynamics of entanglement: a
key issues review, Rep. Prog. Phys. 78 (2015) 042001.

[63] F. Caruso, V. Giovannetti, C. Lupo, S. Mancini, Quantum channels and memory
effects, Rev. Mod. Phys. 86 (2014) 1203-1259.

[64] H. P. Breuer, E. M. Laine, J. Piilo, Measure for the degree of non-Markovian be-
havior of quantum processes in open systems, Phys. Rev. Lett. 103 (2009) 210401.

[65] A.Rivas, S. F. Huelga, M. B. Plenio, Entanglement and non-Markovianity of quan-
tum evolutions, Phys. Rev. Lett. 105 (2010) 050403.

[66] X. M. Lu, X. W. C. P. Sun, Quantum fisher information flow and non-Markovian
processes of open systems, Phys. Rev. A 82 (2010) 042103.

[67] S. Luo, S. Fu, H. Song, Quantifying non-Markovianity via correlations, Phys. Rev.
A 86 (2012) 044101.

[68] S. Lorenzo, F. Plastina, M. Paternostro, Geometrical characterization of non-
Markovianity, Phys. Rev. A 88 (2013) 020102.

[69] D. Chruscinski, S. Maniscalco, Degree of non-Markovianity of quantum evolution,
Phys. Rev. Lett. 112 (2014) 120404.

[70] C. Addis, B. Bylicka, D. Chruscinski, S. Maniscalco, Comparative study of non-
Markovianity measures in exactly solvable one-and two-qubit models, Phys. Rev.
A 90 (2014) 052103.

[71] H. P. Breuer, E. M. Laine, J. Piilo, B. Vacchini, Non-Markovian dynamics in open
quantum systems. reviews of modern physics, Rev. Mod. Phys. 88 (2016) 021002.

26



[72] Y. Liu, H. M. Zou, M. F. Fang, Quantum coherence and non-Markovianity of an
atom in a dissipative cavity under weak measurement, Chin. Phys. B 27 (2018)
010304.

[73] S. Bhattacharya, B. Bhattacharya, A. S. Majumdar, Convex resource theory of non-
Markovianity, arXiv:1803.06881 [quant-ph].

[74] A. Mortezapour, M. A. Borji, D. Park, R. Lo Franco, Non-Markovianity and co-
herence of a moving qubit inside a leaky cavity, Open Sys. Inf. Dyn. 24 (2017)
1740006.

[75] A. Mortezapour, R. Lo Franco, Protecting quantum resources via frequency modu-
lation of qubits in leaky cavities, Sci. Rep. 8 (2018) 14304.

[76] A. Mortezapour, G. Naeimi, R. Lo Franco, Coherence and entanglement dynamics
of vibrating qubits, Opt. Comm. 424 (2018) 26.

[77] A. Mortezapour, M. A. Borji, R. Lo Franco, Protecting entanglement by adjusting
the velocities of moving qubits inside non-Markovian environments, Laser Phys.
Lett. 14 (2017) 055201.

[78] G. J. Milburn, Decoherence and the conditions for the classical control of quantum
systems, Phil. Trans. R. Soc. A 370 (2012) 4469.

[79] C. Altafini, F. Ticozzi, Modeling and control of quantum systems: an introduction,
IEEE Trans. Autom. Control 57 (2012) 1898.

[80] D. Calvani, A. Cuccoli, N. I. Gidopoulos, P. Verrucchi, Parametric representation
of open quantum systems and cross-over from quantum to classical environment,
PNAS 110 (2013) 6748.

[81] R. Lo Franco, B. Bellomo, E. Andersson, G. Compagno, Revival of quantum cor-
relation without system-environment back-action, Phys. Rev. A 85 (2012) 032318.

[82] J.-S.Xu, K. S., C.-F. Li, X.-Y. Xu, G.-C. Guo, E. Andersson, R. Lo Franco, G. Com-
pagno, Experimental recovery of quantum correlations in absence of system-
environment back-action, Nat. Comm. 4 (2013) 2851.

[83] A. Orieux, G. Ferranti, A. D’Arrigo, R. Lo Franco, G. Benenti, E. Paladino,
G. Falci, F. Sciarrino, P. Mataloni, Experimental on-demand recovery of quan-

tum entanglement by local operations within non-Markovian dynamics, Sci. Rep. 5
(2015) 8575.

27



[84] J. I. Costa-Filho, R. B. B. Lima, R. R. Paiva, P. M. Soares, W. A. M. Morgado,
R. Lo Franco, D. O. Soares-Pinto, Enabling quantum non-Markovian dynamics by
injection of classical colored noise, Phys. Rev. A 95 (2017) 052126.

[85] J. Trapani, M. Bina, S. Maniscalco, M. G. A. Paris, Collapse and revival of quantum
coherence for a harmonic oscillator interacting with a classical fluctuating environ-
ment, Phys. Rev. A 91 (2015) 022113.

[86] C. Benedetti, F. Buscemi, P. Bordone, M. G. A. Paris, Dynamics of quantum corre-
lations in colored-noise environments, Phys. Rev. A 87 (2013) 052328.

[87] M. Rossi, C. Benedetti, M. G. A. Paris, Engineering decoherence for two-qubit
systems interacting with a classical environment, Int. J. Quantum Inform. 12 (2014)
1560003.

[88] C. Benedetti, F. Buscemi, P. Bordone, M. G. A. Paris, Effects of classical environ-
mental noise on entanglement and quantum discord, Int. J. Quantum Inform. 10
(2012) 1241005.

[89] F. Buscemi, P. Bordone, Time evolution of tripartite quantum discord and entan-
glement under local and nonlocal random telegraph noise, Phys. Rev. A 87 (2013)
042310.

[90] P. Bordone, F. Buscemi, C. Benedetti, Effect of markov and non-markov classical
noise on entanglement dynamics, Fluct. Noise Lett. 11 (2012) 1242003.

[91] H. Rangani Jahromi, M. Amniat-Talab, Precision of estimation and entropy as wit-
nesses of non-Markovianity in the presence of random classical noises, Ann. Phys.
360 (2015) 446.

[92] C. Benedetti, M. G. A. Paris, Effective dephasing for a qubit interacting with a
transverse classical field, Int. J. Quantum Inform. 12 (2014) 1461004.

[93] J. Trapani, M. G. A. Paris, Nondivisibility versus backflow of information in under-
standing revivals of quantum correlations for continuous-variable systems interact-
ing with fluctuating environments, Phys. Rev. A 93 (2016) 042119.

[94] J. D. Cresser, C. Facer, Master equations with memory for systems driven by clas-
sical noise, Opt. Commun. 283 (2010) 773.

[95] A.D’Arrigo, R. Lo Franco, G. Benenti, E. Paladino, G. Falci, Recovering entangle-
ment by local operations, Ann. Phys. 350 (2014) 211.

28



[96] B. Leggio, R. Lo Franco, D. O. Soares-Pinto, P. Horodecki, G. Compagno, Dis-
tributed correlations and information flows within a hybrid multipartite quantum-
classical system, Phys. Rev. A 92 (2015) 032311.

[97] A. D’Arrigo, R. Lo Franco, G. Benenti, E. Paladino, G. Falci, Hidden entangle-
ment, system-environment information flow and non-markovianity, Int. J. Quantum
Inform. 12 (2014) 1461005.

[98] A. D’Arrigo, R. Lo Franco, G. Benenti, E. Paladino, G. Falci, Hidden entangle-
ment in the presence of random telegraph dephasing noise, Phys. Scr. T153 (2013)
014014.

[99] B. Bellomo, R. Lo Franco, E. Andersson, J. D. Cresser, G. Compagno, Dynamics
of correlations due to a phase noisy laser, Phys. Scr. T147 (2012) 014004.

[100] R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, E. Paladino, Entanglement
dynamics in superconducting qubits affected by local bistable impurities, Phys. Scr.
T147 (2012) 014019.

[101] X. Xiao, M. E. Fang, Y. L. Li, Non-markovian dynamics of two qubits driven by
classical fields: population trapping and entanglement preservation, J. Phys. B 43
(2010) 185505.

[102] Y. L. Li, X. Xiao, Y. Yao, Classical-driving-enhanced parameter-estimation pre-
cision of a non-Markovian dissipative two-state system, Phys. Rev. A 91 (2015)
052105.

[103] Y.J.Zhang, W. Han, Y. J. Xia, J. P. Cao, H. Fan, Classical-driving-assisted quantum
speed-up, Phys. Rev. A 91 (2015) 032112.

[104] Z. Huang, H. Situ, Non-Markovian dynamics of quantum coherence of two-level
system driven by classical field, Quant. Inf. Process. 16 (2017) 222.

[105] P. Haikka, S. Maniscalco, Non-markovian dynamics of a damped driven two-state
system, Phys. Rev. A 81 (2010) 052103.

[106] H.Z. Shen, M. Qin, X.-M. Xiu, X. X. Y1, Exact non-Markovian master equation for
a driven damped two-level system, Phys. Rev. A 89 (6) (2014) 062113.

[107] Y. X. Liu, C. P. Sun, F. Nori, Scalable superconducting qubit circuits using dressed
states, Phys. Rev. A 74 (5) (2006) 052321.

29



[108] J. Kofler, C. Brukner, Condition for macroscopic realism beyond the leggett-garg
inequalities, Phys. Rev. A 87 (2013) 052115.

[109] A. Streltsov, G. Adesso, M. B. Plenio, Colloquium: Quantum coherence as a re-
source, Rev. Mod. Phys. 89 (2017) 041003.

[110] T. Baumgratz, M. Cramer, M. B. Plenio, Quantifying coherence, Phys. Rev. Lett.
113 (2014) 140401.

[111] L. Viola, E. Knill, S. Lloyd, Dynamical decoupling of open quantum systems, Phys.
Rev. Lett. 82 (12) (1999) 2417.

[112] A. M. Souza, G. A. Alvarez, D. Suter, Robust dynamical decoupling, Phil. Trans.
R. Soc. A 370 (2012) 4748-4769.

[113] J. Pachos, H. Walther, Quantum computation with trapped ions in an optical cavity,
Phys. Rev. Lett. 89 (2002) 187903.

[114] J. Pachos, P. Zanardi, M. Rasetti, Non-abelian berry connections for quantum com-
putation, Phys. Rev. A 61 (1999) 010305.

[115] D. Mgller, L. B. Madsen, K. Mglmer, Geometric phase gates based on stimulated
raman adiabatic passage in tripod systems, Phys. Rev. A 75 (2007) 062302.

[116] L.-M. Duan, J. I. Cirac, P. Zoller, Geometric manipulation of trapped ions for quan-
tum computation, Science 292 (2001) 1695-1697.

[117] A.Recati, T. Calarco, P. Zanardi, J. I. Cirac, P. Zoller, Holonomic quantum compu-
tation with neutral atoms, Phys. Rev. A 66 (2002) 032309.

[118] P. Solinas, P. Zanardi, N. Zanghi, F. Rossi, Semiconductor-based geometrical quan-
tum gates, Phys. Rev. B 67 (2003) 121307.

[119] L. Faoro, J. Siewert, R. Fazio, Non-abelian holonomies, charge pumping, and quan-
tum computation with josephson junctions, Phys. Rev. Lett. 90 (2003) 028301.

[120] A. A. Abdumalikov Jr., J. M. Fink, K. Juliusson, M. Pechal, S. Berger, A. Wallraff,
S. Filipp, Experimental realization of non-abelian non-adiabatic geometric gates,
Nature 496 (2013) 482485.

[121] H. Paik, D. L. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R.
Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, R. J.
Schoelkopf, Observation of high coherence in josephson junction qubits measured
in a three-dimensional circuit ged architecture, Phys. Rev. Lett. 107 (2011) 240501.

30



[122] J. Tuorila, M. Silveri, M. Sillanpéé, E. Thuneberg, Y. Makhlin, P. Hakonen, Stark
effect and generalized Bloch-Siegert shift in a strongly driven two-level system,
Phys. Rev. Lett. 105 (2010) 257003.

[123] J. Li, et al., Motional averaging in a superconducting qubit, Nat. Comm. 4 (2013)
1420.

[124] F. Beaudoin, M. P. da Silva, Z. Dutton, A. Blais, First-order sidebands in circuit
QED using qubit frequency modulation, Phys. Rev. A 86 (2012) 022305.

31



	Introduction
	The system
	Leggett-Garg Inequality
	Quantum witness and coherence
	Geometric phase
	Non-Markovianity
	Conclusion
	Expression of the state evolution amplitude Bk(t)
	Calculation of the quantum witness

